

Contents

1 ProSuite plugins overview ... 5

2 VScript as plugins developing language ... 6
2.1 VScript language reference .. 6

2.1.1 VScript data type .. 6
2.1.2 VScript operators .. 7

2.1.2.2 Assignment operators ... 8
2.1.2.2 Arithmetic operators ... 8
2.1.2.3 Concatenation operators ... 8
2.1.2.4 Comparison operators .. 8
2.1.2.5 Logical operators .. 9

2.1.3 VScript variables .. 9
2.1.3.1 Explicit declaring variables (Dim statement) .. 9
2.1.3.2 Implicit declaring variables (assignment operator) ... 10
2.1.3.4 Scalar and array variables .. 10

2.1.4 VScript constants .. 11
2.1.5 VScript procedures ... 12

2.1.5.1 Sub procedure ... 12
2.1.5.2 Function procedure .. 13
2.1.5.3 Calling procedures from code ... 13

2.1.7 VScript flow control ... 13
2.1.7.1 Conditional statements .. 14

2.1.7.1.1 If...Then...Else ... 14
2.1.7.1.2 Select…Case .. 15

2.1.7.2 Looping statements ... 16
2.1.7.2.1 Do...Loop .. 16
2.1.7.2.2 While...Wend ... 18
2.1.7.2.3 For...Next .. 18
2.1.7.2.4 For Each...Next.. 19

2.1.8 Handling errors .. 19
2.2 VScript built-in classes .. 20

2.2.1 Regular expressions management ... 21
2.2.1.1 RegExp class .. 21
2.2.1.2 Matches class.. 22
2.2.1.3 Match class .. 22

2.2.2 XML support ... 22
2.2.2.1 XMLNode class .. 22
2.2.2.2 XMLAttribute class ... 23
2.2.2.3 XMLElement class ... 23
2.2.2.4 XMLDocument class .. 23
2.2.2.5 XML exceptions ... 24

2.2.3 JSON support ... 25
2.2.5 Network connection support ... 25

2.2.5.1 Connection class ... 25
2.2.5.2 Proxy class ... 26

3 Plugins development .. 27
3.1 Common functions... 27
3.1 Common classes ... 27

3.1.1 ProAdmin class .. 27
3.1.1.1 User class.. 29
3.1.1.2 Group class .. 29
3.1.1.3 Application class.. 30

3.1.2 SmartCard class ... 30
3.1.3 System class .. 30

ProSuite Plugin Developer’s Guide

2

3.1.4 DBDictionary class .. 31
3.1.5 SessionDictionary class ... 32
3.1.6 Buffer class .. 33
3.1.7 URLLib class... 35
3.1.8 XML_Dialog ... 36

1.3.8.1 Using the XML_Dialog object in macro’s source code .. 36
1.3.8.2 Methods of the XML_Dialog object ... 37
1.3.8.3 Elements of the XML_Dialog object .. 37

1.3.8.3.1 VDOMFormContainer ... 37
1.3.8.3.2 Heading .. 38
1.3.8.3.3 TextBox ... 38
1.3.8.3.4 Dropdown .. 39
1.3.8.3.5 RadioButton .. 40
1.3.8.3.6 CheckBox .. 40
1.3.8.3.7 TextArea.. 42
1.3.8.3.8 Upload ... 42

3.2 Specific classes for plugins ... 43
3.2.1 ProShare ... 43

3.2.1.1 Pages where plugins are available ... 43
3.2.1.2 ProShare global classes .. 43

3.2.1.2.1 ProShare class .. 43
3.2.1.2.2 Page_Status class .. 44

3.2.1.3 ProShare classes .. 44
3.2.1.3.1 File class .. 44
3.2.1.3.2 Folder class .. 46
3.2.1.3.3 SmartFolder class .. 49

3.2.1.4 ProShare events ... 51
3.2.2 ProContact ... 52

3.2.2.1 Pages where plugins are available ... 52
3.2.2.2 ProContact global classes .. 52

3.2.2.2.1 Page_Status class .. 52
3.2.2.3 ProContact classes .. 52

3.2.2.3.1 Contact class ... 52
3.2.2.3.2 ContactList class .. 53

3.2.2.4 ProContact events .. 54
3.2.3 ProPlanning ... 54

3.2.3.1 Pages where plugins are available ... 54
3.2.3.2 ProPlanning global classes .. 54

3.2.3.2.1 Page_Status class .. 55
3.2.3.3 ProPlanning classes .. 55

3.2.3.3.1 Calendar class... 55
3.2.3.3.2 Event class ... 57
3.2.3.3.3 Notification class ... 58

3.2.3.4 ProPlanning events .. 59

4 Developer’s interface .. 60
4.1 Plugin creating ... 60
4.2 Macros creating ... 62
4.3 Configuration macro ... 64
4.4 Timers creating .. 65
4.5 Plugin exporting .. 66
4.6 Plugin importing ... 66

5 ProSuite applications API .. 68
5.1 ProAdmin API ... 68

5.1.1 ProAdmin objects ... 68

ProSuite Plugin Developer’s Guide

3

5.1.1.1 User .. 68
5.1.1.2 Application .. 68

5.1.2 ProAdmin API methods .. 68
5.1.3 Errors description .. 70

5.2 ProShare API ... 70
5.2.1 ProShare objects ... 70

5.2.1.1 User .. 71
5.2.1.2 Node .. 71
5.2.1.3 File ... 71

5.2.2 ProShare API methods .. 71
5.2.3 Errors description .. 73

5.3 ProContact API ... 73
5.3.1 ProContact objects ... 73

5.3.1.1 User .. 73
5.3.1.2 ContactList ... 73
5.3.1.3 Contact .. 73

5.3.2 ProContact API methods ... 74
5.3.3 Errors description .. 77

5.4 ProPlanning API ... 77
5.4.1 ProPlanning objects ... 77

5.4.1.1 User .. 77
5.4.1.2 Calendar ... 77
4.4.1.3 Event .. 77
5.4.1.4 Invite .. 78

5.4.2 ProPlanning API methods ... 78
5.4.3 ProPlanning recurrence rule ... 80
5.4.4 Errors description .. 81

5.5 ProSearch API ... 81
5.5.1 ProSearch objects ... 81

5.5.1.1 User .. 81
5.5.1.2 Agent ... 81
5.5.1.3 Index .. 82
5.5.1.4 SearchSource .. 82
5.5.1.5 Document .. 82

5.5.2 ProSearch API methods .. 82
5.5.3 Errors description .. 84

5.6 ProMail API .. 85
5.6.1 ProMail objects .. 85

5.6.1.1 User .. 85
5.6.1.2 Archive .. 85
5.6.1.3 Mailbox ... 85
5.6.1.4 Mail ... 86
5.6.1.5 Attachment .. 86

5.6.2 ProMail API methods .. 86
5.6.3 Errors description .. 90

6 Additional information ... 91

ProSuite Plugin Developer’s Guide

4

Introduction

This document contains the information about how to enhance the functionality of the ProSuite applications with the help

of Plugins. This description is specially made for users who have different level of programming skills: from beginners to

advanced. Such topics as the process of plugins creating, way of using the VScript programming language for writing

plugins and also the description of all objects of ProSuite applications are covered in the document.

ProSuite applications represent web applications which are aimed at making the collaborative work easier and improving

the quality of job execution. It consists of separate web applications which can both work independently and interact with

each other.

The opportunity of creating plugins for ProSuite is offered in order to allow users to adjust the ProSuite web applications

to executing the specific tasks of some company. Plugin is an additional programming module built in the ProSuite

application, that enhances the functional capabilities of this application.

In the next sections of this document you will find the description of how plugins work and what they consist of, what

scripting objects and the objects of applications are and how they can be used in the macro’s source code, and how to

create plugins for the ProSuite applications.

ProSuite Plugin Developer’s Guide

5

1 ProSuite plugins overview

Plugin represents an additional module, that provides to a ProSuite application an additional or customized functionality.

All plugins for ProSuite applications are written in the VScript programming language, that has much in common with the

VBScript language. On the whole, plugins represent XML files, what implies the possibility of exporting and importing

plugins. This feature gives the opportunity of copying plugins from one server to another one with the same application

installed, so the developer can create plugins not only for the needs of his company but also to the orders of customers.

Since plugins for ProSuite represent XML files, they can be created both in the ProSuite application and exported to it. The

constituent part of a plugin is macro, which executes the main actions. Plugins can also include timers, which trigger the

macros execution on the expiry of the specified period of time.

Macro is a part of plugin that contains the source code executing some actions. Depending on the plugin type there can

be distinguished three types of macros: button, event and timer.

When you create a button macro, a button is added to the Plugins section of the application, that executes the macro’s

source code. The plugins, in which such type of macro is used, allow user to manipulate the objects of the application’s

page.

The code of the event macro is executed when the specified event occurs, for example, this event can be like adding a file

to the Files of ProShare, editing the contact in ProContact and deleting the calendar in ProPlanning. The list of possible

event of each ProSuite application you can find in the section where all objects of application are described.

The macro, which code is executed on the expiry of the specified period of time, is called timer macro. The period of time

is specified by the timer, which is bound to the macro.

There is one more type of macro - a configuration macro. When you add a macro of such type, a Configure plugin

button is added to the plugin. When you press this button the source code of the macro is executed. Though a

configuration macro is similar in nature to the button macro, it provides an opportunity of configuring the plugin to which

this macro refers.

Timer is a part of plugin that is used to count the specified time intervals, for executing a macro’s source code. On the

expiry of the specified period of time, the special event occurs which triggers the execution of the macro.

ProSuite Plugin Developer’s Guide

6

2 VScript as plugins developing language

VScript is a programming language of macros for the plugins of the ProSuite applications. When writing code in VScript

you can use the objects of different levels, such as:

global objects - the global objects which are used to call the server’s data;

common objects - the objects common for all ProSuite applications;

application objects - the objects which are peculiar only for one ProSuite application, like the objects of ProPlanning, the

objects of ProContact and so on.

The description of the VScript programming language and the objects of different levels you can find in the sections

below.

2.1 VScript language reference

2.1.1 VScript data type

A variable is a named storage location holding the data that can change during the execution of the VScript program. It is

used for representing the data types. Variable names must begin with an alphabetic character, must be unique within the

same scope, and cannot be longer than 255 characters.

A variable in VScript represents a Variant data type. The different categories of data that variables hold can be classified

into subtypes. A Variant provides a uniform programming interface for variable's subtypes (such as integer, real and so

on) which get determined at runtime. Since Variant is the only data type in VScript, it is also the data type returned by all

functions in VScript.

A Variant can contain different kinds of information, depending on how it is used. For example, the Variant can contain

either numeric or string information, it behaves as a number when you use it in a numeric context and as a string when

you use it in a string context. That is, if you are working with the data that looks like numbers, VScript assumes that these

data are numbers and does what is most appropriate for numbers. Similarly, if you are working with data that can only be

string data, VScript treats it as string data.

Beyond the simple numeric or string classifications, a Variant can make further distinctions about the specific nature of

numeric information. For example, you can have numeric information that represents a date or a time. When used with

other date or time data, the result is always expressed (with a little exceptions) as a date or a time. You can also have a

rich variety of numeric information ranging in size from Boolean values to huge floating-point numbers. Most of the time,

you can just put the kind of data you want in a Variant, and the Variant behaves in a way that is most appropriate for the

data it contains.

There are the following subtypes in VScript:

Subtype Description

Array A complex subtype containing an array data.

Dim MyArray(9)

Array(1, 2, 3)

Binary A simple subtype containing the binary data.

Boolean A simple subtype representing a logical data type which can contain either True (equivalent to 0) or False

(equivalent to -1).

True

ProSuite Plugin Developer’s Guide

7

False

Date A complex subtype containing an integer that represents date (between January 1, 100 to December 31,

9999) and time.

#01.01.2010#

#18:20#

Dictionary A simple subtype containing specific key-value pairs.

Dictionary(1, “A”, 2, “B”, 3, “C”)

Double A simple subtype containing a real number (8 bytes) with the precision 15 digits (double-precision) in

floating-point format ranging from -1.79769313486232e308 to -4.94065645841247e-324 for negative

values, and from 4.94065645841247e-324 to 1.79769313486232e308 for positive values.

1.25

1E-2

Empty A simple subtype that is used as the initial variable's value or as default value of variables which are not

initialized explicitly.

Empty

Error A complex subtype used for storing exceptions.

DivisionByZero

SubscriptOutOfRange

Generic A complex subtype that is a parent object for all complex objects, both user’s and system’s ones.

Integer A simple subtype containing an integer number (4 bytes) in the range from -2,147,483,648 to

2,147,483,647. A value can be only a decimal figure.

123

-567

Nothing A complex subtype showing the absence of object. It is the analogue of Empty subtype, but is used for

complex objects, for example, when it is necessary to clear the complex object.

Nothing

Null A complex subtype intentionally containing no valid data. It is usually used in databases when it is

necessary to show the absence of data.

Null

String A simple subtype containing a variable-length string that can be up to approximately 2 billion characters in

length in the Unicode character set.

“This is a string”

2.1.2 VScript operators

Operator represents a command which performs an operation on one or more code elements - operands. VScript has a

full range of operators, including arithmetic, comparison, logical (or relational), assignment, membership and identity

ProSuite Plugin Developer’s Guide

8

ones. Operators combined with the code returning some value (for example, constants or variables) form expressions or

statements (in case of the assignment operator).

There is no limit of the number of operators which can be combined into expression, but understanding of operator

precedence is necessary to ensure that you will get the results which you are expecting.

If in an expression several operations occur at the same time, each part of the expression is evaluated and resolved in a

predetermined order called operator precedence.

There follows some tips of how expressions will be evaluated and how you can change the order of evaluating them:

To override the order of precedence and force some parts of an expression to be evaluated before others you can use

parentheses. Operations within parentheses are always performed before those outside. Within parentheses, however,

standard operator precedence is maintained;

If there are operators from several categories in one expression, the operators are evaluated in the following order

(beginning from the highest precedence to the lowest):

arithmetic operators and concatenation operators are evaluated in the order of precedence described in the next sections;

comparison operators - have equal precedence; that is, they are evaluated in the left-to-right order in which they appear;

logical operators - are evaluated in the order of precedence described in the next sections;

Assignment operators compose a stand-alone group of operators, they do not follow the general rules of precedence;

If there are two or more operators in a statement of the equal precedence, they are evaluated in the left-to-right order in

which they appear.

2.1.2.2 Assignment operators

The assignment operator allows you to assign new values to variables or object properties. The assignment operator takes

the value on the right side of the operator and assigns it to the variable on the left side. There is only one assignment

operator in VScript.

Operator Name Description Example

= simple assignment Assign values from right side operands to left side operand. c=a+b

2.1.2.2 Arithmetic operators

The arithmetic operators perform the arithmetic operations that involve the calculation of numeric values represented by

constants, variables, other expressions, function and property calls. These operators have usual mathematical precedence.

Operator Name Description Example

^ exponentiation Raise a number to the power of an exponent. a^b

- unary negation Indicate the negative value of a numeric operand. -a

* multiplication Multiply two numeric operands. a*b

/ division Divide two numeric operands and return a floating-point result. b/a

\ integer division Divide two numeric operands and return an integer result. a\b

Mod modulus arithmetic Divide two numeric operands and return the remainder. b Mod a

+ addition Sum two numeric operands. a+b

- subtraction Find the difference between two numeric operands. a-b

2.1.2.3 Concatenation operators

C Concatenation operator joins multiple strings into a single string. There is only one concatenation operator in VScript. It

is not recommended to use + operator to concatenate strings, because it can bring out some unpredictable results.

Operator Name Description Example

& string

concatenation

Concatenate string operands. It is defined exclusively for strings and reduces

the chances of generating an unintended conversion.

a&b

2.1.2.4 Comparison operators

ProSuite Plugin Developer’s Guide

9

Comparison operators are used to compare two expressions, or in case of Is operator, to compare two object reference

variables. The return value of such operation is a Boolean value that represents the result of the comparison. All kinds of

objects can be compared, no matter what information they contain. All comparison operators have the same precedence

(which is higher than that of the Boolean operations).

Operator Name Description Example

= equal to Compare two operands and return a Boolean value (True or

False) as to the validity of the comparison.

a=b

<> not equal to Compare two operands and return a Boolean True if the

operands are not equal.

a<>b

< less than Compare two operands and return a value of True if the left

operand is less than the value of the right operand.

a greater than Compare two operands and return a value of True if the left

operand is greater than the value of the right operand.

a>b

<= less than or equal

to

Compare two operands and return True if the first operand is

less than or equal to the second.

a<=b

>= greater than or

equal to

Compare two operands and return True if the first operand is

greater than or equal to the second.

a>=b

Is object

equivalence

Compare two operands and evaluate to True if the variables on

either side of the operator point to the same object and False

otherwise.

This operator can work incorrectly with VScript additional

objects (see the section 2.2 VScript additional objects).

a Is b

Is results in 1 if id(x)

equals id(y).

IsNot object

inequivalence

Compare two operands and evaluate to False if the variables

on either side of the operator point to the same object and

True otherwise.

This operator can work incorrectly with VScript additional

objects (see the section 1.2 VScript additional objects).

x IsNot y

IsNot results in 1 if id(x)

is not equal to id(y).

2.1.2.5 Logical operators

The logical operators are used for logical combinations in comparisons. They compare Boolean expressions and return a

Boolean result. Any object can be tested for truth value, for use in an if- or while-condition or as operand of the Boolean

operations. Using parentheses you can combine several different logical operations in one more complex operation. The

And, Or and Xor operators take two operands, and the Not operator takes a single operand.

Operator Name Description Example

Not logical negation Reverse the logical state of the operand. If a condition is True, Not operator

will make False.

Not a

And logical

conjunction

If both operands are True, the condition becomes True. a And b

Or logical

disjunction

If any of the two operands is nonzero then then condition becomes True. a Or b

Xor logical exclusion Perform a logical exclusion on two Boolean operands, or a bitwise exclusion on

two numeric operands.

a Xor b

2.1.3 VScript variables

A variable is a named storage location holding the data that can change during the execution of the VScript program. It is

used for representing any data type. Variable names are case insensitive, must begin with an alphabetic character, must be

unique within the same scope, cannot be longer than 255 characters.

2.1.3.1 Explicit declaring variables (Dim statement)

ProSuite Plugin Developer’s Guide

10

This way is a recommended one. Explicit declaring a variable means that you allocate the storage space for a variable that

will be used somewhere in your code. Dim statement declares and allocates storage space for one or more variables. With

the help of this statement the variables are declared explicitly in your script.

Explicit declaring of a variable

Dim DegreesFarenheit

You can declare multiple variables by separating each variable name with a comma.

Explicit declaring of multiple variables

Dim Top, Bottom, Left, Right

2.1.3.2 Implicit declaring variables (assignment operator)

A variable can be declared implicitly inside the code. It is implemented by simple assigning a value to a variable with the

help of assignment operators. The expression created should be as follows: the variable is on the left side of the

expression and the value you want to assign to the variable is on the right as in the many other languages.

In the following example, the simple assignment operator (=) is used:

Implicit declaring of a variable

B = 200

2.1.3.4 Scalar and array variables

All variables can be divided into two groups: scalar and array ones. They are declared in the same way, except that the

declaration of an array variable uses parentheses () following the variable name. A scalar variable is a variable containing

a single value. An array variable can contain many indexed values; their counting starts from 0 (zero-based arrays). The

array is declared within a procedure using either Dim or ReDim statement. Array variables can be static and dynamic.

Static array has a fixed size, because we can definitely say how many elements it includes.

Declaring a static array

Dim MyArray(5)

MyArray in this example contains 6 elements (counting the elements starts from 0). You can assign data to each of the

elements of the array using an index into the array. Beginning from zero and finishing with 5, the data can be assigned to

the elements of an array.

Assigning values to the elements of an array

MyArray(0) = “a”

MyArray(1) = “b”

MyArray(2) = “c”

...

MyArray(5) = “f”

The data can be retrieved from any element using an index into the particular array element you want.

Assigning a value of an array’s element to a variable

...

ProSuite Plugin Developer’s Guide

11

SomeVariable = MyArray(5)

...

An array can have from 1 to 60 dimensions. A dimension is a direction in which you can vary the specification of an

array's elements. The number of dimensions an array has is called its rank. To declare multiple dimensions you must

separate an array's size numbers in the parentheses by commas.

Declaring an array with multiple dimensions

Dim MyArray (3, 7)

Dynamic array is an array whose size changes during the time when the script is running. For an array to be dynamic, no

size or number of dimensions is placed inside the parentheses. There is no limit to the number of times you can resize a

dynamic array, although if you make an array smaller, you will lose the data in the eliminated elements.

Declaring a dynamic array

Dim MyArray()

In the example below the ReDim statement sets the initial size of the dynamic array to 5.

Resizing the dynamic array

ReDim MyArray(5)

A subsequent ReDim statement resizes the array to 10.The Preserve statement is used to preserve the contents of the

array as the resizing takes place.

Resizing the dynamic array with saving the contents

ReDim Preserve MyArray(10)

2.1.4 VScript constants

A constant is a named storage location holding the data that cannot change during the execution of the VScript program.

It raises an error on trying to rewrite it. It is a meaningful name that takes the place of a number or string and raises an

error on trying to rewrite it.

A constant can include a string literal, a numeric literal, date and time literals, or any combination that includes arithmetic

or logical operators except Is and exponentiation. Additional constants can be defined by the user with the Const

statement. You can use constants anywhere in your code in place of actual values.

You can create user-defined constants in VScript using the Const statement. With the help of this statement, you can

create string or numeric constants with meaningful names and assign them literal values.

Different types of values are assigned in different ways:

numeric values - simple assignment;

string values - a value is enclosed in quotation marks (" ");

date literals and time literals - a value enclosed in number signs (#).

Declaring different types of constants

Const MyStringConst = "A string constant."

Const MyIntConst = 1999

ProSuite Plugin Developer’s Guide

12

Const MyDateConst = #6-1-97#

Const MyTimeConst = #1:10:00 AM#

You may want to adopt a naming scheme to differentiate constants from variables. This will prevent you from trying to

reassign constant values while your script is running. For example, you might want to use a prefix on your constant names,

or you might name your constants in all capital letters. Differentiating constants from variables eliminates confusion as

you develop more complex scripts.

2.1.5 VScript procedures

A procedure is a part of code grouped into a single entity. Procedures have such feature as reusability. Once you create a

procedure, you can use its code by calling that procedure. Two kinds of VScript procedures - the Sub procedure and the

Function procedure, are described below.

Every piece of data is passed to the procedures using arguments (constants, variables, or expressions that are passed by a

calling procedure). They serve as placeholders for the data you want to pass into the procedure. When you create a

procedure using either the Sub statement or the Function statement, parentheses must be included after the name of the

procedure. The arguments are placed inside the parentheses, separated by commas. If a procedure has no arguments, its

Sub or Function statement must include an empty set of parentheses ().

2.1.5.1 Sub procedure

A Sub procedure can perform some actions, but cannot return values. A Sub procedure must be enclosed in Sub and End

Sub statements.

To create a Sub procedure use the following syntax:

Sub name [(arglist)]

 [statements]

 [Exit Sub]

 [statements]

End Sub

In the following example a Sub procedure NewTotal is declared.

Declaring a Sub procedure

Sub NewTotal

 Dim myNum, total

 For myNum = 16 To 2 Step -2

 total = total + myNum

 Next

 this.Label.value = "The total is " & total

End Sub

The example of declaring the Sub procedure that converts temperature.

Declaring a Sub procedure

Sub ConvertTemp

 temp = request.QueryString("Degrees")

 this.Label.value =_

 "The temperature is " & Celsius(temp) & " degrees C. "

ProSuite Plugin Developer’s Guide

13

End Sub

2.1.5.2 Function procedure

A Function procedure is similar to a Sub procedure but it cannot only perform some actions but also return values. A

Function procedure returns a value by assigning a value to its name in one or more statements of the procedure. The

returned data type of a Function procedure is always a Variant. A Function procedure must be is enclosed in Function

and End Function statements.

To create a Function procedure use the following syntax.

Scheme of declaring a Function procedure

Function name [(arglist)]

 [statements]

 [name = expression]

 [Exit Function]

 [statements]

 [name = expression]

End Function

In the following example, fDegrees is a placeholder for the value passed into the Celsius function for conversion.

Declaring a Function procedure

Function Celsius(fDegrees)

 Celsius = (fDegrees -32) * 5 / 9

End Function

2.1.5.3 Calling procedures from code

A Function in a code must always be used on the right side of a variable assignment or in an expression.

Calling a Function procedure

Temp = Celsius(fDegrees)

Message = "The temperature is " & Celsius(temp) & " degrees C. "

To call a Sub procedure from another procedure, type the name of the procedure along with values for any required

arguments, each separated by a comma. The Call statement is not required, but if you use it, you must enclose the

arguments in parentheses.

The following example shows two calls to the MyProc procedure. One uses the Call statement in the code; the other does

not. Both do exactly the same thing.

Calling a Sub procedure

Call MyProc(firstarg, secondarg)

MyProc firstarg, secondarg

Note, that the parentheses are omitted when the Call statement is not used.

2.1.7 VScript flow control

ProSuite Plugin Developer’s Guide

14

The code of a script that you have written is executed in a certain order when you run it. The order of code execution is

called flow. Usually the script engine starts with the first line of the script, executes it, then goes to the next line and so

on, until it reaches the end.

VScript also provides the opportunity of flow control: it can be done with the help of conditional statements (branching)

and looping statements. These control flow statements can alter the way of flow execution by branching to other code

sections (in case of the conditional statements) or repeating some code sections (in case of the looping statements).

2.1.7.1 Conditional statements

The conditional statements provide an opportunity of code branching. There are two cases of using the conditional

statements in VScript.

2.1.7.1.1 If...Then...Else

If...Then...Else statement conditionally executes a group of statements, depending on the value of an expression (True or

False). Usually the condition is an expression that uses a comparison operator to compare one value or variable with

another. If...Then...Else statement can include as many levels as you need.

End If terminates the If...Then...Else block. ElseIf clauses expand the functionality of the statement so you can control

program flow based on different possibilities.

The single-line syntax is used for short, simple tests.

Scheme of single-line using the statement

If condition Then [statements] [Else [elsestatements]]

The multiple-line syntax provides more structure and flexibility and is usually easier to read, maintain, and debug:

Scheme of multiple-line using the statement

If condition Then

 [statements]

[ElseIf elseifcondition Then

 [elseifstatements]]

[Else

 [elsestatements]]

End If

For example, to run one statement if a condition is True, use the single-line syntax. Note that this example omits the Else

keyword.

Running the single-line statement if a condition is True

Sub FixDate

 Dim myDate

 myDate = #2/13/95#

 If myDate < Now Then myDate = Now

End Sub

To run more than one line of code if a condition is True, use the multiple-line syntax. This syntax includes the End If

statement, as it is shown in the following example.

Running the multiple-line statement if a condition is True

Sub AlertUser(value)

ProSuite Plugin Developer’s Guide

15

 If value = 0 Then

 this.Label.color = "FF0000"

 this.Label.Font = "bold 12pt"

 End if

End Sub

You can use an If...Then...Else statement to define two blocks of executable statements: one block to run if the condition

is True, the other block to run if the condition is False.

Running one statement if a condition is True and another if a condition is False

Sub AlertUser(value)

 If value = 0 Then

 this.Label.color = "FF0000"

 this.Label.Font = "bold 12pt"

 Else

 this.Label.color = "FFFF00"

 this.Label.Font = "bold 10pt"

 End if

End Sub

2.1.7.1.2 Select…Case

Select…Case statement allows selecting from several alternatives. It runs one of several groups of statements, depending

on the value of an expression. The Select Case construction starts and the End Select terminates the execution of the

Select...Case statement.

To create a Select…Case statement use the following syntax:

Scheme of using the statement

Select Case testexpression

 [Case expressionlist-n

 [statements-n]] . . .

 [Case Else expressionlist-n

 [elsestatements-n]]

End Select

A Select…Case statement works with a single test expression that is evaluated once, at the top of the structure. The result

of the expression is then compared with the values for each Case in the structure. If there is a match, the block of

statements associated with that Case is executed, as in the following example.

Running the statement

Select Case Request.Form("CardType")

 Case "MasterCard"

 DisplayMCLogo

 ValidateMCAccount

 Case "Visa"

 DisplayVisaLogo

 ValidateVisaAccount

 Case "American Express"

 DisplayAMEXCOLogo

 ValidateAMEXCOAccount

 Case Else

 DisplayUnknownLogo

 PromptAgain

ProSuite Plugin Developer’s Guide

16

End Select

In comparison with the If...Then...Else statement which can evaluate different expressions for each ElseIf statement, the

Select…Case statement evaluates an expression written at the top of the structure.

2.1.7.2 Looping statements

Looping allows you to run a group of statements repeatedly. Some loops repeat statements until a condition is False;

others repeat statements until a condition is True. There are also loops that repeat statements a specific number of times.

There are several looping statements available in VScript.

2.1.7.2.1 Do...Loop

You can use Do...Loop statement to run a block of statements an indefinite number of times. The Do...Loop statement

repeats a block of statements either while a Boolean condition is True or until a condition becomes True.

To create a Do...Loop statement use the syntax:

Scheme of using the statement with checking the condition before the statement

Do [{While | Until} condition]

 [statements]

 [Exit Do]

 [statements]

Loop

Or, you can use the following syntax:

Scheme of using the statement with checking the condition after the statement

Do

 [statements]

 [Exit Do]

 [statements]

Loop [{While | Until} condition]

Use the Do…Loop statement to repeat it while a condition is True. To check a condition in a Do...Loop statement use the

While keyword. You can check the condition before you enter the loop as it is shown in the following example. In this

example if myNum is set to 9 instead of 20, the statements inside the loop will never run.

Checking the condition before the statement

Sub ChkFirstWhile()

 Dim counter, myNum

 Counter = 0

 myNum = 20

 Do While myNum > 10

 myNum = myNum - 1

 counter = counter + 1

 Loop

 this.Label.value =_

 "The loop made " & counter & " repetitions."

End Sub

You can check the condition after the loop has been run at least once as it is shown in the example. In this example the

statements inside the loop run only once because the condition is already False.

ProSuite Plugin Developer’s Guide

17

Checking the condition after the statement

Sub ChkLastWhile()

 Dim counter, myNum

 Counter = 0

 myNum = 9

 Do

 myNum = myNum - 1

 counter = counter + 1

 Loop While myNum > 10

 this.Label.value =_

 "The loop made " & counter & " repetitions."

End Sub

Do…Loop statement can also be used to repeat it until a condition becomes True. There are two ways to use the Until

keyword to check a condition in a Do...Loop statement. You can check the condition before you enter the loop as it is

shown in the following example.

Looping until a condition becomes True

Sub ChkFirstUntil()

 Dim counter, myNum

 Counter = 0

 myNum = 20

 Do Until myNum = 10

 myNum = myNum + 1

 counter = counter + 1

 Loop

 this.Label.value =_

 "The loop made " & counter & " repetitions."

End Sub

You can check the condition after the loop has run at least once as it is shown in the example. As long as the condition is

False, the looping occurs.

Looping as long as the condition is False

Sub ChkLastUntil()

 Dim counter, myNum

 Counter = 0

 myNum = 1

 Do

 myNum = myNum + 1

 counter = counter + 1

 Loop While myNum = 10

 this.Label.value =_

 "The loop made " & counter & " repetitions."

End Sub

To exit a Do...Loop statement use the Exit Do statement. Since you usually want to exit only in certain situations, like in

order to avoid an endless loop, you should use the Exit Do statement in the True statement block of the Do...Loop

statement. If the condition is False, the loop runs as usual. In the following example, myNum is assigned a value that

creates an endless loop. The Do...Loop statement checks for this condition, preventing the endless repetition.

Exiting the statement

Sub ExitExample()

 Dim counter, myNum

 Counter = 0

ProSuite Plugin Developer’s Guide

18

 myNum = 9

 Do Until myNum = 0

 myNum = myNum - 1

 counter = counter + 1

 If myNum < 5 Then Exit Do

 Loop

 this.Label.value =_

 "The loop made " & counter & " repetitions."

End Sub

2.1.7.2.2 While...Wend

A While…Wend statement executes a series of statements as long as a given condition is True. Due to the lack of

flexibility in While...Wend, it is recommended that you use Do...Loop statement instead.

To create a While…Wend statement use the following syntax.

Scheme of using the statement

While condition

 [statements]

Wend

If condition is True, all statements are executed until the Wend statement is encountered. Control then returns to the

While statement and condition is again checked. If condition is still True, the process is repeated. If it is not True,

execution resumes with the statement following the Wend statement.

2.1.7.2.3 For...Next

For...Next statement repeats a group of statements a specified number of times. In such statements you can use a

counter variable whose value increases or decreases with each repetition of the loop.

To create a For...Next statement use the following syntax:

Scheme of using the statement

For counter = start To end [Step step]

 [statements]

 [Exit For]

 [statements]

Next

In the following example a procedure called MyProc is caused to execute 50 times. The For statement specifies the

counter variable x and its start and end values. The Next statement increments the counter variable by 1.

Running one and the same statement several times

Sub DoMyProc50Times

 Dim x

 For x = 1 To 50

 myProc

 Next

End Sub

ProSuite Plugin Developer’s Guide

19

Using the Step keyword, you can increase or decrease the counter variable by the value you specify. In the following

example, the counter variable j is incremented by 2 each time the loop repeats. When the loop is finished, the total is the

sum of 2, 4, 6, 8, and 10.

Running the statement increasing the variable’s value

Sub TwosTotal

 Dim j, total

 For j = 2 To 10 Step 2

 total = total + j

 Next

 this.Label.value = "The total is " & total

End Sub

To decrease the counter variable, use a negative Step value. You must specify the end value that is less than the start

value. In the following example, the counter variable myNum is decreased by 2 each time the loop repeats. When the loop

is finished, total is the sum of 16, 14, 12, 10, 8, 6, 4, and 2.

Running the statement decreasing the variable’s value

Sub NewTotal()

 Dim myNum, total

 For myNum = 16 To 2 Step -2

 total = total + myNum

 Next

 this.Label.value = "The total is " & total

End Sub

You can exit any For...Next statement before the counter reaches its end value by using the Exit For statement. Because

you usually want to exit only in certain situations, such as when an error occurs, you should use the Exit For statement in

the True statement block of an For...Next statement. If the condition is False, the loop runs as usual.

2.1.7.2.4 For Each...Next

A For Each...Next statement repeats a group of statements for each item in a collection or each element of an array. It is

similar to a For...Next loop, but instead of repeating the statements a specified number of times, a For Each...Next loop

repeats a group of statements for each item in a collection of objects or for each element of an array. This is especially

helpful if you do not know how many elements are in a collection.

To create a For...Next statement use the following syntax:

Scheme of using the statement

For Each element In group

 [statements]

 [Exit For]

 [statements]

Next [element]

Running the statement

For Each name In request.servervariables

 result=result & name & "-" & Resquest.servervariables(name)

Next

2.1.8 Handling errors

ProSuite Plugin Developer’s Guide

20

It is very difficult to prevent errors occurring when writing code. So, to develop a stable code you must manage errors

inside it.

To handle the errors that may occur in a block of code, while still running code use the Try…Catch…Finally…End Try

statement. If you suppose a particular exception might occur during a particular section of code, put the code in a Try

block and use a Catch block to retain control and handle the exception if it occurs.

The syntax of the statement is the following:

Scheme of using the statement

Try ' Start a structured exception handler.

 [statements] ' Executable statements that may generate an exception in this block.

 [Exit Try]

[Catch [exception [As type]] [When expression] ' This code runs if the statements listed in the Try block fail and the filter on the

Catch statement is true.

 [statements]

 [Exit Try]]

[Catch ...]

[Finally

 [statements]] ' Runs before the Try statement exits.

End Try ' Finish a structured exception handler.

VScript provides a list of possible errors described in a table below:

Exception Description

generic

The basic class used for all exceptions. It can be used in order to differentiate VScript errors

from other errors.

Try

 server.vscript.execute(script)

except errors.generic:

 print “There is a VScript error”

property_have_no_arguments
Raised for properties if no arguments have been passed. The exception does not have

additional parameters.

object_has_no_property

Raised in case of unprovided property calling. It happens, for example, when you are trying

to make the property read-only, or when you are trying to assign a property, which can

have a simple object as a value, using set property. It is better to designate the name of the

property as its argument.

subscript_out_of_range Raised in case of incorrect indexing during working with collections.

type_mismatch Raised on trying to process the parameters with unexpected subtype.

wrong_number_of_arguments
Raised in functions, which accept the optional arguments, if the number of them mismatch.

It accepts the function name as a parameter.

invalid_procedure_call
Raised by function in case of getting the incorrect parameters. It is better to designate the

name of the function as its argument.

division_by_zero Raised when an expression being used as a divisor has a value of zero.

overflow Raised when you attempt an assignment that exceeds the limits of the assignment's target.

2.2 VScript built-in classes

The VScript built-in classes are used to enhance the basic functionality of code. They are accessible from any part of script

and do not depend on the server's status and on other classes of environment. Besides, they can work with classes linked

to some application that means, that they are accessible for the scripts executing in the context of the applications. Pay

attention, that the comparison operator Is and IsNot can work incorrectly with these classes (see the section 2.1.2.4

Comparison operators).

ProSuite Plugin Developer’s Guide

21

There are built-in classes which differ in their functions:

regular expressions management;

XML support;

JSON support;

network connection support.

2.2.1 Regular expressions management

Regular expression is a class that includes other classes such as RegExp, Matches and Match. It provides simple regular

expression support including declaring regular expressions, comparing, searching in a string and iterating the results.

Create an instance of the RegExp class

Set MyRegExp=New RegExp

MyRegExp.IgnoreCase=True

MyRegExp.Global=True

MyRegExp.Pattern="abc[a-z]+"

Set Matches=MyRegExp.Execute("klm abcdef klm defABCklm klm")

For Each Match In Matches

 Print Match.Value

Next

2.2.1.1 RegExp class

RegExp class has the following properties:

Property Description

Pattern A string defining the regular expression; it must be set before using the regular expression object.

IgnoreCase Set or return a Boolean value indicating if a pattern search is case-sensitive or not.

Default value - False.

Global A Boolean value indicating that the regular expression needs being tested for matches in a string.

Default value - False.

RegExp class has the following methods:

Method Description

Test(string) Return True if the regular expression matches the given argument (string), otherwise -

False.

result=regex.test("w1")

Replace(search-string,

replace-string)

Replace the first argument (search-string) found in the regular expression by the second

argument (replace-string).

Return the first argument (search-string) if no matches are found.

result=regex.replace("w1 w2 w3","w")

Execute(replace-string) Similar to the Replace method, but returns a Matches collection object, containing a Match

object for each successful match. It does not modify the search string.

Return an empty Matches collection if no match is found.

result=regex.execute

ProSuite Plugin Developer’s Guide

22

2.2.1.2 Matches class

Matches is a VScript built-in class representing a collection returned as a result of the Execute method. It can contain zero

or more Match objects; its properties are read-only.

Matches class has the following properties:

Property Description

Count A value containing the number of Match objects in the collection. Read-only.

Item A value enabling a Match objects to be randomly accessed from the Matches collection object. Read-only.

The Match objects may also be incrementally accessed from the Matches collection object, using a For Each…Next loop.

Accessing the Match objects from the Matches collection object

For Each Match In Matches

 Print Match.Value

Next

2.2.1.3 Match class

Match is a VScript built-in class that represents a subclass of the Matches class (each successful match found by the

regular expression). Its properties are read-only and contain the information about each match.

Match class has the following properties:

Property Description

FirstIndex A value containing the position within the original string where the match occurred. This index uses a zero-

based offset to record positions, meaning that the first position in a string is 0. Read-only.

Length A value containing the total length of the matched string. Read-only.

Value A value containing the matched value or text. It is also the default value when accessing the Match object.

Read-only.

2.2.2 XML support

The XML support includes such classes used for working with XML as XMLNode, XMLAttribute, XMLElement,

XMLDocument and associated exceptions.

2.2.2.1 XMLNode class

XMLNode is a VScript built-in class representing a general class that implements the XML node. XMLNode class has the

following properties:

Property Description

Parent The parent of the current node, or Nothing for the root (document) node. Read-only.

Prev The node that immediately precedes this one. Read-only.

Next The node that immediately follows this one. Read-only.

Attributes Return attributes of this node. Read-only.

Nodes Return list of the child nodes. Read-only.

First Return the first child node for this node. Read-only.

Last Return the last child node for this node. Read-only.

Name Return name of this node, if possible. Read-only.

Value Return value of this node, if possible. Read-only.

XMLNode class has the following methods:

ProSuite Plugin Developer’s Guide

23

Method Description

HasAttributes() Return True when the node has any attributes.

HasNodes() Return True when the node has any child nodes.

IsElement() Return True when node is element.

IsAttribute() Return True when node is attribute.

IsText() Return True when this node is text.

IsCData() Return True when this is CData node.

IsComment() Return True when this is comment node.

IsDocument() Return True when this node is root document node.

IsSameNode(Node) Return True when node and this node is the same.

Append(Node)
Add new child node to this node after all other child nodes. If child node already added to

another node, it is removed first.

Insert(Node,

ReferenceNode)

Insert new child node to this node before reference node. If child node already added to

another node, it is removed first.

Remove(Node) Remove a child node from this node. Return node on success.

Replace(Node,

ReferenceNode)
Replace an existing child node by a new one.

Normalize Join adjacent text nodes into the single node.

Clone([Deep]) Clone the node and all child nodes if they are present. Return new node.

Compose Compose this node in XML if possible and return string.

2.2.2.2 XMLAttribute class

XMLAttribute is a VScript built-in class representing a subclass of the XMLNode, which inherits all its properties and

methods.

2.2.2.3 XMLElement class

XMLElement is a VScript built-in class representing a subclass of the XMLNode, which inherits all its properties and

methods. It is an XML element with attributes, which has the following additional properties and methods.

XMLElement class has the following property:

Property Description

Elements Return a list of the child elements. Read-only.

XMLElement class has the following methods:

Method Description

Search(Name) Return a list of the child elements with specified name.

HasAttribute(Name) Return True if the element has an attribute with specified name.

GetAttribute(Name) Return element's attribute with specified name.

GetAttributeNode(Name) Return element attribute's node.

SetAttribute(Name, Value) Assign new value to element's attribute with specified name.

SetAttributeNode(Node) Add a new attribute node or replace existing with the new node.

RemoveAttribute(Name) Remove attribute from the element.

2.2.2.4 XMLDocument class

XMLDocument is an built-in class representing a subclass of the XMLElement class, which inherits all its properties and

methods. It also has the following methods.

Method Description

ProSuite Plugin Developer’s Guide

24

Method Description

Parse(Value) Parse string value and build XML node tree.

CreateElement(Name) Create and return new XMLElement.

CreateTextNode(Value) Create and return new text XMLNode with appropriate value.

CreateComment(Value) Create and return new comment XMLNode with appropriate value.

CreateAttribute(Name) Create and return new XMLAttribute with appropriate name.

2.2.2.5 XML exceptions

When you work with XML some exceptions can be raised. The exceptions supported in VScript are as follows:

Exception Description

XMLError Base exception class used for all XML exceptions.

XMLDomstirngSizeError Raised when a specified range of text does not fit into a string.

XMLHierarchyRequestError Raised when an attempt is made to insert a node where the node type is not allowed.

XMLIndexSizeError
Raised when an index or size parameter to a method is negative or exceeds the allowed

values.

XMLInuseAttributeError
Raised when an attempt is made to insert an attribute node that is already present elsewhere

in the document.

XMLInvalidAccessError Raised if a parameter or an operation is not supported on the underlying object.

XMLInvalidCharacterError
Raised when a string parameter contains a character that is not permitted in the context it’s

being used in by the XML 1.0 recommendation.

XMLInvalidModificationError Raised when an attempt is made to modify the type of a node.

XMLInvalidStateError Raised when an attempt is made to use an object that is not defined or is no longer usable.

XMLNamespaceError
Raised when an attempt is made to change any object in a way that is not permitted with

regard to the Namespaces in XML recommendation.

XMLNotFoundError Raised when a node does not exist in the referenced context.

XMLNotSupportedError
Raised when the implementation does not support the requested type of object or

operation.

XMLNoDataAllowedError Raised if data is specified for a node which does not support data.

XMLNoDataAllowedError
Raised on attempts to modify an object where modifications are not allowed (such as for

read-only nodes).

XMLSyntaxError Raised when an invalid or illegal string is specified.

XMLWrongDocumentError
Raised when a node is inserted in a different document than it currently belongs to, and the

implementation does not support migrating the node from one document to the other.

For example:

Set XML=New XMLDocument

XML.Parse("<xml a1='1' a2='2'><a>AB<c>C</c></xml>")

For Each Element In XML.Elements

 Print Element.Name

Next

Print XML.Search("b").Length

Set Attribute=XML.GetAttributeNode("a1")

Print Attribute.Name & " is “ & Attribute.Value

For Each Attribute In XML.Attributes

 Print Attribute.Name

Next

ProSuite Plugin Developer’s Guide

25

Print XML.Compose

2.2.3 JSON support

The JSON support includes such functions used for working with JSON as ToJSON and AsJSON.

Function Description

ToJSON

Accept double, integer, string, array or dictionary as input and convert them to the string in the JSON format.

For example:

MyArray=Array(1, 2, 3)

Print ToJSON(MyArray)

AsJSON

Accept string as input parse and return appropriate data. For example:

MyArray=AsJSON("[1, 2, 3]")

For Each Item In MyArray

 Print Item

Next

2.2.5 Network connection support

The network connection support includes such objects used for working with the network connection as Connection and

Proxy.

Setting network connection

Set MyConnection=New Connection

MyConnection.Open("http://site.net/file")

MyConnection.Encoding="utf-8"

Print MyConnection.Read

MyConnection.Close

2.2.5.1 Connection class

Connection is a VScript built-in class representing a class used for opening the network connection with a server and

reading and writing the data from it.

Connection class has the following properties:

Property Description

Encoding Set the character encoding for receiving and sending the data.

Proxy Set the list of proxies to use. The value of this property must represent an object of Proxy class.

IsConnected Return the logical value, which indicates the current state of a network connection. Read-only.

Connection class has the following methods:

Method Description

Open(URL)

Open the network connection to the given URL. Only HTTP protocol is supported.

URL - the URL to which the network connection is opening. Here the full address of the resource must be

written.

ProSuite Plugin Developer’s Guide

26

Method Description

Read()
Read the data. If the character encoding has been set (in the Encoding property), the result will be returned as

a String; otherwise - as a Binary subtype.

Write(Data)
Write the data. If the character encoding has been set (in the Encoding property), a string must be sent as an

attribute; otherwise - as a Binary subtype.

Close() Close the network connection and the current session. The connection can be opened again later.

2.2.5.2 Proxy class

Proxy is a VScript built-in class representing a class used together with the Connection class, which represents a list of

proxy. It allows you to create a proxy list for different protocols.

Setting new proxy

Set MyProxy=New Proxy

MyProxy(“HTTP”)=”192.168.1.1”

ProSuite Plugin Developer’s Guide

27

3 Plugins development

Each ProSuite application has its own set of classes and functions available for using in macros for plugins. The classes are

different in the range of use, and according to it can be grouped into the common classes for all plugins and the classes

specific for every ProSuite application.

The description of these classes is also structured in accordance with these two class types.

3.1 Common functions

There are some functions which can be used by developers of macros. They are used for debugging primarily. These

functions are as follows:

Function Data

type

Description

generate_guid String Generate and return the String containing a globally unique identifier. It is used when you

want to generate a unique name.

guid = generate_guid

logger guid

logger(“data”

)

String Send a String containing some data to the logger. The Strings can be concatenated.

Logger is accessible in the logs page of the ProSuite application. To go to logs in the address

bar of your browser write the link to the application, then “/logs”.

logger(“Hello, world!”)

3.1 Common classes

There are classes accessible from plugins of any ProSuite application. They are called common classes. The description of

the common classes for plugins you can find in the sections below.

3.1.1 ProAdmin class

ProAdmin is a common class that provides access to the ProAdmin library. Its main functionality is to work with users and

groups registered in the ProAdmin application. The methods of the ProAdmin class return instances of the classes

described below.

Method Data

type

Description

current_user User Return the instance of the User class, which is currently logged in the application, if such

instance exists; or return Nothing if there are no currently logged in users.

set current_user = ProAdmin.current_user

logger current_user.name

set_user(user

)

User Set the user given in the parameter as a current user.

user - the instance of the User class.

ProSuite Plugin Developer’s Guide

28

set current_user = ProAdmin.current_user

logger "Current user name - " & current_user.name

users = ProAdmin.users("test")

if Ubound(users) > -1 then

 set user = users(0)

 ProAdmin.set_user(user)

 set current_user = ProAdmin.current_user

 logger "New current user name - " & current_user.name

else

 logger "no such user 'test'"

end if

login(user,

password)

 Change the user logged in the system. If during logging in an error occurs, the exception

(ProAdminEmptyPasswordError, ProAdminLoginError) will be raised.

user - the name of the instance of the User class;

password - the user’s password.

ProAdmin.login("test", "test")

set current_user = ProAdmin.current_user

logger "Current user name - " & current_user.name

users([email

[,guid]])

Array Return the Array consisting of instances of the User class. Searching by ‘email’ and/or ‘guid’

can also be set. If the parameters of searching are not set, all the users registered in ProAdmin

will be returned.

email - the user's E-mail;

guid - the user's globally unique identifier.

users = ProAdmin.users("root")

if ubound(users) > -1 then

 set user = users(0)

 logger user.name

else

 logger "No such user 'root'"

end if

groups([name

[,guid]])

Array Return the Array consisting of instances of a Group class. Searching by ‘name and/or ‘guid’

can also be set. If the parameters of searching are not set, all the groups registered in

ProAdmin will be returned.

name - the name of the instance of the Group class;

guid - the group's globally unique identifier.

groups = ProAdmin.groups("Administrators")

if ubound(groups) > -1 then

 set group = groups(0)

 logger group.name

else

 logger "No such group 'root'"

end if

user_in_group(

user, group)

Boolean Return True if the instance of the User class belongs to the group, if not - False.

ProSuite Plugin Developer’s Guide

29

 user - the name of the instance of the User class;

group - the group name.

groups = ProAdmin.groups("Administrators")

set admins = groups(0)

users = ProAdmin.users("root")

set root = users(0)

users = ProAdmin.users("test")

set test = users(0)

logger "Is user 'root' in group 'Administrators': " & ProAdmin.user_in_group(root, admins)

logger "Is user 'test' in group 'Administrators': " & ProAdmin.user_in_group(test, admins)

applications Array Return the array of the instances of the Application class registered in ProAdmin.

apps = ProAdmin.applications

for each app in apps

 logger "App name: " & app.name

 logger "IP: " & app.ip

 logger "GUID: " & app.guid

next

3.1.1.1 User class

User is a class returned by the methods of ProAdmin class that contains instances with the information about the users.

All values here are read-only. Every instance of this class has the following fields:

Field Data type Description

guid String A String containing the user's globally unique identifier.

name String A String containing the user name.

email String A String containing the user's E-mail address.

phone String A String containing the user's telephone number.

first_name String A String containing the user's first name.

last_name String A String containing the user's last name.

In order to get the necessary data use the notation like in the example:

User.name

This class has the following methods:

Method Data type Description

get_groups Array Return the Array consisting of instances of the Group class to which the user belongs.

set user = ProAdmin.current_user

groups = user.get_groups

for each group in groups

 logger group.name

next

3.1.1.2 Group class

ProSuite Plugin Developer’s Guide

30

Group is a class returned by the methods of ProAdmin class that contains the instances with the information about the

groups. All values here are read-only. Every instance of this class has the following parameters:

Field Data type Description

guid String A String containing the group's globally unique identifier.

name String A String containing the group name.

In order to get the necessary data use the notation like in the example:

Group.name

This class has the following methods:

Method Data type Description

get_users Array Return the array containing instances of the User class (the users, belonging to this group).

groups = ProAdmin.groups("Administrators")

set group = groups(0)

users = group.get_users

for each user in users

 logger user.name

next

3.1.1.3 Application class

Application is a class returned by the methods of ProAdmin class that contains the instances with the information about

the application. All values here are read-only. Every instance of this class has the following parameters:

Field Data type Description

guid String A String containing the application's globally unique identifier.

name String A String containing the application name.

ip String A String containing the IP address, which refers to the application.

In order to get the necessary data use the notation like in the example:

Application.ip

3.1.2 SmartCard class

SmartCard is a common class that stores information about the licenses and settings recorded on a smart card. This class

has the following method:

Method Description

get_parameter(key) Return the system attributes.

3.1.3 System class

System is a common class that provides the general interface for working with the VDOM server. This class has the

following methods:

Method Data

type

Description

application_id String Return the String containing the identifier of the application.

logger system.application_id

ProSuite Plugin Developer’s Guide

31

application_name String Return the String containing the name of the application.

logger system.application_name

application_hosts Array Return the Array containing the virtual hosts of the application.

hosts = system.application_hosts

for each host in hosts

 logger host

next

server_version String Return the String containing the version of VDOM server.

logger system.server_version

send_email(to_email,

from_email, subject, body)

 Send an E-mail.

to_email - the E-mail address of the receiver of the E-mail;

from_email - the E-mail address of the sender of the E-mail;

subject - the subject of the E-mail;

body - the content of the E-mail.

system.send_email("to@user.com", "sender@user.com", "Test message", "Vscript testing"

)

http_request(url) Make a HTTP request (for example, you can send data via GET method to some

API).

system.http_request("url.com/page?params=1")

logger Send a message to the log. Logger is accessible in the logs page of the ProSuite

application. To go to logs in the address bar of your browser write the link to the

application, then “/logs”.

logger "Hello, world!"

clear_log Delete all records from log.

system.clear_log

enable_debug Enable writing messages to logs.

system.enable_debug

disable_debug Disable writing messages to logs.

system.disable_debug

3.1.4 DBDictionary class

ProSuite Plugin Developer’s Guide

32

DBDictionary is a common dictionary-like class that represents a key-value storage, which can be used from VScript. All

macros from one plugin have one storage. Macros from different plugins do not have access to the data of each other.

Here can be stored only simple data types, like Strings, Integers and so on.

Method Data

type

Description

DBDictionary.remove(

"key")

 Remove all the data from the DBDictionary.

dbdictionary("key") = "value"

dbdictionary.remove("key")

if isEmpty(dbdictionary("key")) then

 logger "value removed from DBDictionary"

else

 logger "value in dbdictionary"

end if

DBDictionary("key") String Return the String containing the value from the DBDictionary with the given key. If

there is no such key, Empty will be returned.

dbdictionary("key") = "value"

logger dbdictionary("key")

DBDictionary("key"

)="value"

 Put the value to the DBDictionary.

dbdictionary("key") = "value"

logger dbdictionary("key")

3.1.5 SessionDictionary class

SessionDictionary is a common dictionary-like class accessible only from the button macros. It represents a key-value

storage where the data can be stored during the session. All macros from one plugin have one storage. Macros from

different plugins do not have access to the data of each other. Here can be stored not only simple but also complex data

types.

Method Data

type

Description

remove("key") Remove all the data from the SessionDictionary.

SessionDictionary("key") = "value"

SessionDictionary.remove("key")

if isEmpty(SessionDictionary("key")) then

 logger "value removed from SessionDictionary"

else

 logger "value in SessionDictionary"

end if

SessionDictionary("key") Return a simple data type from the SessionDictionary with the given key. If

there is no such key, Empty will be returned.

SessionDictionary("key") = "value"

logger SessionDictionary("key")

SessionDictionary("key"

)="value"

 Put a simple data type to the SessionDictionary.

SessionDictionary("key") = "value"

logger SessionDictionary("key")

set SessionDictionary("key" Put a complex data type to the SessionDictionary.

ProSuite Plugin Developer’s Guide

33

)= object

set SessionDictionary("key") = ProAdmin.current_user

if isEmpty(SessionDictionary("key")) then

 logger "value removed from SessionDictionary"

else

 logger "value in SessionDictionary"

 set user = SessionDictionary("key")

 logger user.name

end if

set value =

SessionDictionary("key")

 Return a complex data type from the SessionDictionary with the given key. If

there is no such key, Empty will be returned.

set SessionDictionary("key") = ProAdmin.current_user

if isEmpty(SessionDictionary("key")) then

 logger "value removed from SessionDictionary"

else

 logger "value in SessionDictionary"

 set user = SessionDictionary("key")

 logger user.name

end if

3.1.6 Buffer class

Buffer is a common class that provides an interface for working with files. It uses all standard principles and functions of

working with files.

Method Data

type

Description

create Buffer Create an instance of the Buffer class; return the instance.

set buffer = Buffer.create

write(string

)

String Write a string to a file.

string - an object of String subtype.

set buf = Buffer.create

buf.write("Some text")

buf.seek(0)

logger buf.read

writelines(

array)

String Write several strings to a file.

array - an object of Array subtype, which includes 0 or more objects of String subtype.

dim lines(4)

lines(0) = "Some"

lines(1) = " "

lines(2) = "test"

lines(3) = " "

lines(4) = "Method writelines"

set buf = Buffer.create

buf.writelines(lines)

buf.seek(0)

logger buf.read

ProSuite Plugin Developer’s Guide

34

read([size]) String Read the bytes from a file; return it as a String.

size - optional parameter, sets the maximum size of a string in bites. If it is not set, the whole

contents of a file will be returned.

system.clear_log

set buf = Buffer.create

buf.write("Some text")

buf.seek(0)

logger buf.read

buf.seek(0)

logger buf.read(2)

readline(

[size])

String Read a line from a file; return it as a String.

size - optional parameter, sets the maximum size of a string in bites. If it is not set, the whole

contents of a file will be returned.

set buf = Buffer.create

buf.write("Some text")

buf.seek(0)

logger buf.readline

readlines(

[size])

Array Read lines from a file; return it as an Array consisting of Strings.

size - optional parameter, sets the maximum size of a string in bites. If it is not set, the whole

contents of a file will be returned.

set buf = Buffer.create

buf.write("Some text")

buf.seek(0)

lines = buf.readlines

for each line in lines

logger line

next

seek(offset,

[whence])

 Set new value of a pointer.

offset -

whence - optional parameter, by default equals to 0, can be set to 1 or 2.

set buf = Buffer.create

buf.write("Some text")

logger "current position: " & buf.tell

buf.seek(0)

logger "current position: " & buf.tell

tell Integer Return the current position of a pointer.

set buf = Buffer.create

buf.write("Some text")

logger "current position: " & buf.tell

buf.seek(0)

logger "current position: " & buf.tell

truncate(

[size])

 Truncate the file’s size.

ProSuite Plugin Developer’s Guide

35

size - optional parameter, sets the maximum size of a string in bites. If it is set, the file is

truncated to that size. The size defaults to the current position. The current file position is not

changed. Note that if a specified size exceeds the file’s current size, the result is platform-

dependent: possibilities include that the file may remain unchanged, increase to the specified

size as if zero-filled, or increase to the specified size with undefined new content.

set buf = Buffer.create

buf.write("Some text")

buf.truncate(3)

buf.seek(0)

logger buf.read

close Close the file. A closed file cannot be read or written any more.

set buf = Buffer.create

buf.write("Some text")

buf.close

3.1.7 URLLib class

URLLib is a common class that provides an interface for processing data from HTTP request; accepts Universal Resource

Locators (URLs); GET and POST methods are supported.

Method Data

type

Description

urlopen(url,

[params])

 Send a request to the URL address specified by the url argument; return an instance of a

Buffer class.

url - a String containing a valid URL address;

params - a dictionary containing parameters.

Example of GET request

url = "test.host.local/testpage.php?param1=asdasd¶m2=qwerty"

set buf = URLLib.urlopen(url)

Example of POST request

url = "test.host.local/testpage.php"

Sending a file in ASCII format

'creating an array consisting of two elements: the first is the file name, second - the instance of the

buffer class

dim myfile(1)

myfilename(0) = "Filename.txt"

set myfilebuffer = Buffer.create

myfilebuffer.write("The contents of a file")

set myfile(1) = myfilebuffer

'adding the array to parameters

parameters("parameter3") = myfile1

set buf = URLLib.urlopen(url, parameters)

ProSuite Plugin Developer’s Guide

36

3.1.8 XML_Dialog

XML_Dialog is a common object that is accessible only from the button macros. It provides an interface for working with

dialogs used to enable communication between an application and a user. Dialogs in button macros are used when user

triggers macros, and it is necessary to receive some data or inform user about something.

1.3.8.1 Using the XML_Dialog object in macro’s source code

There is a standard way of creating XML_Dialog objects for all web applications based on VDOM technology. This way

implies creating an XML description of a dialog written in a special way, which is rendered by application as a dialog

window. The XML description consists of a number of standard blocks described below.

The way of macro execution is the following: the macro’s source code is executed twice:

 first – when the dialog is shown and receives arguments from user;

 second– when the arguments are already received and they are used in further macro execution.

So, to check whether the macro is executed for the first time or not, add to the XML description of a dialog an invisible

field of a TextBox tag in the following format:

The step identifier

<TextBox id=""step"" visible=""0""></TextBox>"

Start the macro’s source code from checking on having the “step” argument:

Check on having the arguments

arguments = XML_Dialog.get_answer

operation_step = 1

if "step" in arguments then

 operation_step = 2

end if

Here, the operation_step variable defines what piece of code will be executed further: if the “step” argument has not

been received, the operation_step equals 1 which means that the macro is executed for the first time; if the “step”

argument is received, the operation_step equals 2 which means that the macro is executed for the second time.

The XML description of XML_Dialog object must include the macro’s identifier, in order to make the system executing the

macro with this identifier once again. The identifier is returned by the get_answer method together with the received data

when user commits the data to the server. The macro’s identifier is stored in the invisible field of a TextBox block in the

following format:

The macro’s identifier

<TextBox id=" macros_id" visible="0"></TextBox>

The tags of XML description of the XML_Dialog object are assigned to a variable as concatenated Strings. The

get_macros_id method checks the macro’s identifier. For example, here is a piece of macro’s source code containing an

XML_Dialog object:

The XML description of XML_Dialog object

xml_header = "<?xml version='1.0' encoding='utf-8'?><VDOMFormContainer><Components>"

xml_footer = "</Components></VDOMFormContainer>"

ProSuite Plugin Developer’s Guide

37

xml_macros_id = "<TextBox id=""macros_id"" visible=""0""><Properties><Property name=""defaultValue"">" &

XML_Dialog.get_macros_id & "</Property></Properties></TextBox>"

xml_step = "<TextBox id=""step"" visible=""0""><Properties><Property

name=""defaultValue"">2</Property></Properties></TextBox>"

xml_msg = ""

It makes the code more readable when the tags of XML description are split into parts. The whole dialog that is shown

when the step variable equals 1, looks in the source code as follows:

The XML_Dialog object

xml_msg = xml_header & xml_macros_id & xml_step & xml_footer

XML_Dialog.show_xml_form(xml_msg)

1.3.8.2 Methods of the XML_Dialog object

The way of macros execution is implemented thanks to the methods of the XML_Dialog object. These methods are as

follows:

Method
Data

type
Description

show_xml_form (xmlform

)

 Show a dialog to user.

xmlform - the dialog window in XML format.

data_to_xml = "<?xml version=""1.0"" encoding=""utf-8""?>"

data_to_xml = data_to_xml & "<VDOMFormContainer><Components>"

data_to_xml = data_to_xml & "<Heading visible=""1""><Properties><Property

name=""text"">"

data_to_xml = data_to_xml & "Setup sender E-mail"

data_to_xml = data_to_xml & "</Property></Properties></Heading>"

xml_dialog.show_xml_form(data_to_xml)

get_answer

Dictionary Return the Dictionary containing the parameters of the XML dialog.

args = xml_dialog.get_answer

if "arg" in args then

 logger args("token")

else

 logger "No such key 'arg' "

end if

get_macros_id

String Return the String containing the identifier of a macro.

logger xml_dialog.get_macros_id

1.3.8.3 Elements of the XML_Dialog object

The XML description of an XML_Dialog object may include blocks enclosed into the main VDOMFormContainer block.

1.3.8.3.1 VDOMFormContainer

It is a mandatory block that represents a container which includes the Properties and the Components blocks:

The scheme of XML representation of the dialog

ProSuite Plugin Developer’s Guide

38

<VDOMFormContainer>

 <Properties>

 <Property name="theme">The predefined data that describe the general theme</Property>

 </Properties>

 <Components>

 …

 </Components>

</VDOMFormContainer>

Other blocks are enclosed into the Components block. There are such blocks as described below. You can find some

examples of using the elements of the XML_Dialog object below.

1.3.8.3.2 Heading

It is a mandatory block that represents a title of a dialog:

The scheme of XML representation of the dialog

<Heading>

 <Properties>

 <Property name="text"><!--[CDATA[The text to show as a title]]--></Property>

 <Property name="subheading"><!--[CDATA[The text to show under the title]]--></Property>

 </Properties>

</Heading>

1.3.8.3.3 TextBox

It is a mandatory block that includes the macro’s identifier and the field for the data input:

The scheme of XML representation of the dialog

<TextBox id=" macros_id " visible="0">

 <Properties>

 <Property name="label"><!--[CDATA[The label of the textbox]]--></Property>

 <Property name="size">The size of a textbox</Property>

 <Property name="maxSize">The maximum number of characters a user can enter</Property>

 <Property name="defaultValue"><!--[CDATA[The value set as a default one]]--></Property>

 </Properties>

</TextBox>

XML representation of the dialog

<VDOMFormContainer>

 <Components>

<Heading>

 <Properties>

 <Property name="text"><![CDATA[Alarm message]]></Property>

 </Properties>

ProSuite Plugin Developer’s Guide

39

</Heading>

<TextBox id="id-for-textbox" visible="1">

 <Properties>

 <Property name="label"><!--[CDATA[Please, enter your name.]]--></Property>

 <Property name="defaultValue"><!--[CDATA[]]-->Samuel</Property>

 </Properties>

</TextBox>

 </Components>

</VDOMFormContainer>

1.3.8.3.4 Dropdown

It is an optional block that includes an element that allows user to choose one value from a list:

The scheme of XML representation of the dialog

<DropDown id=" dropdown_id" visible="1">

 <Properties>

 <Property name="label"><!--[CDATA[The label of the dropdown]]--></Property>

 <Property name="options">

 <option id="1">Value 1</option>

 <option id="2">Value 2</option>

 <option id="3">Value 3</option>

 </Property>

 </Properties>

</DropDown>

XML representation of the dialog

<VDOMFormContainer>

 <Components>

<Heading>

 <Properties>

 <Property name="text"><![CDATA[Alarm message]]></Property>

 </Properties>

</Heading>

<DropDown id="id-for-dropdown" visible="1">

 <Properties>

 <Property name="label"><!--[CDATA[Please, select the language.]]--></Property>

 <Property name="options">

 <option id="1">French</option>

 <option id="2">English</option>

 <option id="3">Russian</option>

 </Property>

 </Properties>

</DropDown>

ProSuite Plugin Developer’s Guide

40

 </Components>

</VDOMFormContainer>

1.3.8.3.5 RadioButton

It is an optional block that includes an element that allows user to choose only one of a predefined set of options:

The scheme of XML representation of the dialog

<RadioButton id="radiobitton_id" visible="1" selected="The option id set as the default one">

 <Properties>

 <Property name="label"><!--[CDATA[The label of the radiobutton]]--></Property>

 <Property name="options">

 <option id="1">Value 1</option>

 <option id="2">Value 2</option>

 <option id="3">Value 3</option>

 </Property>

 </Properties>

</RadioButton>

XML representation of the dialog

<VDOMFormContainer>

 <Components>

<Heading>

 <Properties>

 <Property name="text"><![CDATA[Alarm message]]></Property>

 </Properties>

</Heading>

<RadioButton id="radio-bitton-id" visible="1" >

 <Properties>

 <Property name="label"><!--[CDATA[Do you want to save the files before continuing?]]--></Property>

 <Property name="options">

 <option id="1">Yes</option>

 <option id="2">No</option>

 </Property>

 </Properties>

</RadioButton>

 </Components>

</VDOMFormContainer>

1.3.8.3.6 CheckBox

It is an optional block that includes an element that allows user to make multiple selections from a number of options or

to have the user answer yes (checked) or no (not checked) on a simple yes/no question:

The scheme of XML representation of the dialog

ProSuite Plugin Developer’s Guide

41

<CheckBox id="checkbox_id" visible="1" selected="true">

 <Properties>

 <Property name="label"><!--[CDATA[The label of the checkbox]]--></Property>

 </Properties>

</CheckBox>

XML representation of the dialog

<VDOMFormContainer>

 <Components>

<Heading>

 <Properties>

 <Property name="text"><![CDATA[Please, select folders to delete.]]></Property>

 </Properties>

</Heading>

<CheckBox id="checkbox-id1" visible="1">

 <Properties>

 <Property name="label"><!--[CDATA[Documents]]--></Property>

 <Property name="options">

 <option id="1"></option></Property>

 <Property name="selected"><![CDATA[]]></Property>

 </Properties>

</CheckBox>

<CheckBox id="checkbox-id2" visible="1">

 <Properties>

 <Property name="label"><!--[CDATA[Archives]]--></Property>

 <Property name="options">

 <option id="2"></option></Property>

 <Property name="selected"><![CDATA[]]></Property>

 </Properties>

</CheckBox>

<CheckBox id="checkbox-id3" visible="1">

 <Properties>

 <Property name="label"><!--[CDATA[Products]]--></Property>

 <Property name="options">

 <option id="3"></option></Property>

 <Property name="selected"><![CDATA[]]></Property>

 </Properties>

</CheckBox>

 </Components>

</VDOMFormContainer>

ProSuite Plugin Developer’s Guide

42

1.3.8.3.7 TextArea

It is an optional block that includes a field for data input:

The scheme of XML representation of the dialog

<TextArea id="textarea_id" visible="1">

 <Properties>

 <Property name="label"><!--[CDATA[The label of the textarea]]--></Property>

 <Property name="defaultValue"><!--[CDATA[The value set as a default one]]--></Property>

 <Property name="height">The height of a textarea in pixels</Property>

 <Property name="width">The width of a textarea in pixels</Property>

 </Properties>

</TextArea>

XML representation of the dialog

<VDOMFormContainer>

 <Components>

<Heading>

 <Properties>

 <Property name="text"><![CDATA[Alarm message]]></Property>

 </Properties>

</Heading>

<TextArea id="textarea-id" visible="1">

 <Properties>

 <Property name="label"><!--[CDATA[Please, enter your comments.]]--></Property>

 <Property name="defaultValue"><!--[CDATA[Here is your comment.]]--></Property>

 </Properties>

</TextArea>

 </Components>

</VDOMFormContainer>

1.3.8.3.8 Upload

It is an optional block that used for uploading files from a local file system to the server:

The scheme of XML representation of the dialog

<Upload id=" upload_id" visible="1">

 <Properties>

 <Property name="label"><!--[CDATA[The label of the upload]]--></Property>

 </Properties>

</Upload>

ProSuite Plugin Developer’s Guide

43

XML representation of the dialog

<VDOMFormContainer>

 <Components>

<Heading>

 <Properties>

 <Property name="text"><![CDATA[Alarm message]]></Property>

 </Properties>

</Heading>

<Upload id="id-for-upload" visible="1">

 <Properties>

 <Property name="label"><!--[CDATA[Please, select the file to upload.]]--></Property>

 </Properties>

</Upload>

 </Components>

</VDOMFormContainer>

3.2 Specific classes for plugins

The classes accessible only from a definite ProSuite application are called specific classes. The description of the specific

classes is structured according to the application where they can be used. You can find it in the sections below.

3.2.1 ProShare

3.2.1.1 Pages where plugins are available

The plugins creating is available on both Files and Smart folders pages of the ProShare application. From this pages

plugins can accumulate the information about the selected files and folders and use it in the macro’s source code.

3.2.1.2 ProShare global classes

3.2.1.2.1 ProShare class

ProShare is a global class that provides an interface to the ProShare application. It has the following methods:

Method Data type Description

get_by_path(

"path")

Folder/File Return the instance of the class stored in the specified path as instance of the File or the

Folder class. If there is no such instance, Nothing will be returned. For example:

set file = ProShare.get_by_path("/temp.file")

logger file.name

root Folder Return the root directory as instance of the Folder class. For example:

ProSuite Plugin Developer’s Guide

44

set root_folder = ProShare.root

logger root_folder.path

3.2.1.2.2 Page_Status class

Page_Status is a global class that is used for working with the session of the user who pressed the button. This class is

accessed only from the button macros. The current status of the application is passed in this class.

Method Data

type

Description

selected_nodes Array Return the Array containing the instances of File class, which have been selected in the

tree on the main page of the ProShare application.

nodes = page_status.selected_nodes

for each node in nodes

 logger node.name

 logger node.path

next

selected_smartfolders Array Return an Array containing the instances of SmartFolder class, which have been

selected in the tree on the Smart folder page of the ProShare application.

folders = page_status.selected_smartfolders

for each folder in folders

 logger node.name

next

current_dir String Return a String containing the current directory.

logger page_status.current_dir

3.2.1.3 ProShare classes

The instances of classes of the ProShare application are returned by the global methods of the application. The classes of

the ProShare application are described below.

3.2.1.3.1 File class

File is a class that provides an interface for working with files. All the parameters of this class are read-only. Every instance

has the following fields:

Field Data

type

Description

guid String A String containing the globally unique identifier of the file.

set file = ProShare.get_by_path("/ad.txt")

logger file.guid

name String A String containing the name of the file.

set file = ProShare.get_by_path("/ad.txt")

logger file.name

upload_date String A String containing the date of loading the file to the server (in the following format:

"%d/%m/%y %H:%M:%S").

ProSuite Plugin Developer’s Guide

45

set file = ProShare.get_by_path("/ad.txt")

logger file.upload_date

modification_date String A String containing the date of the last file modification (in the following format:

"%d/%m/%y %H:%M:%S").

set file = ProShare.get_by_path("/ad.txt")

logger file.modification_date

mimetype String A String containing the MIME type of the file.

set file = ProShare.get_by_path("/ad.txt")

logger file.mimetype

serialize_string String A String containing the serialized data used in search.

set file = ProShare.get_by_path("/ad.txt")

logger file.serialize_string

size Integer An Integer containing the size of a file in bytes.

set file = ProShare.get_by_path("/ad.txt")

logger file.size

path String A String containing the path to the file.

set file = ProShare.get_by_path("/ad.txt")

logger file.path

It has the following methods:

Method Data

type

Description

root Folder Return the root directory where the file is stored as the instance of a Folder class.

set file = ProShare.get_by_path("/ad.txt")

set root = file.root

logger root.path

move(path) Move the file to the directory specified by the argument.

path - the path where to move the file.

set file = ProShare.get_by_path("/ad.txt")

file.move("/test")

set file = ProShare.get_by_path("/test/ad.txt")

logger file.path

copy(path) Copy the file to the directory specified by the argument.

path - the path where to copy the file.

set file = ProShare.get_by_path("/ad.txt")

file.copy("/test")

set file = ProShare.get_by_path("/test/ad.txt")

ProSuite Plugin Developer’s Guide

46

logger file.path

delete Delete the file.

set file = ProShare.get_by_path("/test/ad.txt")

file.delete

set file = ProShare.get_by_path("/test/ad.txt")

if isNothing(file) then

 logger "file deleted"

else

 logger "file exists"

end if

parent Folder Return the root directory where the file is stored as the instance of a Folder class. If the file is

stored in the root directory, Nothing will be returned.

set file = ProShare.get_by_path("/test/ad.txt")

set parent = file.parent

logger parent.path

logger parent.name

open Buffer Return an instance of the Buffer class containing a file. The AccessDeniedError exception is

possible to be raised.

set file = ProShare.get_by_path("/ad.txt")

set buf = file.open

logger buf.read

write(handler) Write data to the file. The contents of a file stored in it before calling this method will be

lost. The AccessDeniedError exception is possible to be raised.

handler - an instance of the buffer class.

set file = ProShare.get_by_path("/ad.txt")

set buf = buffer.create

buf.write("some text")

buf.seek(0)

file.write(buf)

get_by_guid(

guid)

File Return an instance of the File or Folder class by its globally unique identifier. If there is no

such instance, Nothing will be returned.

set file = ProShare.node.get_by_guid("guid")

if isNothing(file) then

logger "File doesn't exists"

else

logger file.name

end if

3.2.1.3.2 Folder class

Folder is a class that provides an interface for working with folders. All the parameters of this class are read-only. Every

instance has the following fields:

Field Data

type

Description

guid String A String containing the globally unique identifier of the folder.

ProSuite Plugin Developer’s Guide

47

set folder = ProShare.get_by_path("/ad")

logger folder.guid

name String A String containing the name of the folder.

set folder = ProShare.get_by_path("/ad")

logger folder.name

upload_date String A String containing the date of creating the folder (in the following format: "%d/%m/%y

%H:%M:%S").

set folder = ProShare.get_by_path("/ad")

logger folder.upload_date

modification_date String A String containing the date of the last folder modification (in the following format:

"%d/%m/%y %H:%M:%S").

set folder = ProShare.get_by_path("/ad")

logger folder.modification_date

mimetype String A String containing the MIME type of the file (always returns the instance of a folder).

set folder = ProShare.get_by_path("/ad")

logger folder.mimetype

path String A String containing the path to the folder.

set folder = ProShare.get_by_path("/ad")

logger folder.path

It has the following methods:

Method Data type Description

mkdir(

new_folder_name)

Folder Create new folder in the current directory; return the instance of the Folder class,

which provides an interface to the folder. If during the creation an error occurs, an

exception will be raised.

new_folder_name - a String containing the name of the folder.

set root = ProShare.root

root.mkdir("new folder")

child_nodes Array Return the Array containing the instances of classes File and Folder stored in the

folder.

set root = ProShare.root

nodes = root.child_nodes

for each node in nodes

 logger node.name

next

root Folder Return the root directory.

move(path) Move the folder to the directory specified by the argument.

path - the path where to move the folder.

ProSuite Plugin Developer’s Guide

48

set folder = ProShare.get_by_path("/ad")

folder.move("/test")

set folder = ProShare.get_by_path("/test/ad")

logger folder.path

copy(path) Copy the folder to the directory specified by the argument.

path - the path where to copy the folder.

set folder = ProShare.get_by_path("/ad")

folder.copy("/test")

set folder = ProShare.get_by_path("/test/ad")

logger folder.path

delete Delete the folder.

set folder = ProShare.get_by_path("/ad")

folder.delete

parent Folder Return the instance of a Folder class. If the file is stored in the root directory, Nothing

will be returned.

set folder = ProShare.get_by_path("/ad")

set parent = folder.parent

logger parent.path

create_file(name,

handler)

 Create new file in a folder.

name -a name of a file;

handler - an instance of the buffer class. The AccessDeniedError,

FileAlreadyExistsError, IllegalCharactersInNameError, LongNameError exceptions are

possible to be raised.

set folder = ProShare.get_by_path("/test")

set buf = buffer.create

buf.write("some text")

buf.seek(0)

folder.create_file("new_file", buf)

get_by_guid(guid) Folder/File Return an instance of the File or Folder class by its globally unique identifier. If there

is no such instance, Nothing will be returned.

set folder = ProShare.node.get_by_guid("guid")

if isNothing(folder) then

 logger "Folder doesn't exists"

else

 logger folder.name

end if

The exceptions which can be raised by the classes File and Folder:

Exception Description

DestinationNotFoundError Destination folder not found.

UnknownDestinationTypeError Destination type is not supported.

DirectoryAlreadyExistsError Destination type is not supported.

ProSuite Plugin Developer’s Guide

49

AccessDeniedError You have no permissions to perform this action.

NodeLockedError Node locked.

FileAlreadyExistsError Destination already contains file with same name.

FolderAlreadyExistsError Destination already contains folder with same name.

IllegalCharactersInNameError Name can't contain any of following characters: *?:\|/"<>.

LongNameError Name length is over than 100.

3.2.1.3.3 SmartFolder class

SmartFolder is a class that provides an interface for working with smart folders. All the parameters of this class are read-

only. Every instance has the following fields:

Method Data

type

Description

guid String A String containing the globally unique identifier of the smart folder.

set smartfolder = ProShare.SmartFolder.get_by_name("test")

logger smartfolder.guid

name String A String containing the name of the smart folder. Can be changed. After changing the name

of a SmartFolder call the save method.

set smartfolder = ProShare.SmartFolder.get_by_name("test")

logger smartfolder.name

objects_count String A String containing the number of elements in the smart folder.

set smartfolder = ProShare.SmartFolder.get_by_name("test")

logger smartfolder.objects_count

public_link String A String containing the public link to the smart folder.

set smartfolder = ProShare.SmartFolder.get_by_name("test")

logger smartfolder.public_link

content Dictionary A Dictionary containing the list of folders stored in the current smart folder. It is returned as a

dictionary-like object, where key is a globally unique identifier of the folder and value is a

name of the folder which the folder had when was added to the smart folder.

set smartfolder = ProShare.SmartFolder.get_by_name("test")

content = smartfolder.content

for each guid in content

 logger guid

 logger content(guid)

next

It has the following methods:

Method Data type Description

meta_value(key) Array Return the Array containing the metadata.

set smartfolder = ProShare.SmartFolder.get_by_name("test")

meta_array = smartfolder.meta_value("watcher_emails")

for each email in meta_array

 logger email

next

ProSuite Plugin Developer’s Guide

50

add_meta_value(key,

value)

 Add data to metadata.

set smartfolder = ProShare.SmartFolder.get_by_name("test")

smartfolder .add_meta_value("watcher_emails", "sdasd@mail.mail")

meta_array = smartfolder.meta_value("watcher_emails")

for each email in meta_array

 logger email

next

remove_meta_value(

key, value)

 Remove data from metadata.

add_folder(folder_guid,

label)

 Add a folder to the smart folder.

folder_guid - the globally unique identifier of the instance of the Folder

class;

label - (optional) the name of the folder for displaying. If it is not set

the name of the instance of the Folder class will be used as its label.

set smartfolder = ProShare.SmartFolder.get_by_name("test")

set folder = ProShare.get_by_path("/1")

smartfolder.add_folder(folder.guid, "new_folder")

remove_folder(

folder_guid)

 Remove a folder from the smart folder.

folder_guid - the globally unique identifier of the instance of the Folder

class.

set folder = ProShare.get_by_path("/1")

smartfolder.remove_folder(folder.guid)

get_by_guid(guid) SmartFolder/Nothing Return an instance of the SmartFolder class by its globally unique

identifier. If such instance does not exist, then Nothing will be

returned.

set smartfolder = ProShare.SmartFolder.get_by_guid("123-123-123-123")

if isNothing(smartfolder) then

 logger "Smartfolder doesn't exist"

else

 logger smartfolder.name

end if

get_by_name(name) SmartFolder/Nothing Return an instance of the SmartFolder class by its name. If such

instance does not exist, then Nothing will be returned.

set smartfolder = ProShare.SmartFolder.get_by_name("asdasdasd")

if isNothing(smartfolder) then

 logger "Smartfolder doesn't exist"

else

 logger smartfolder.name

end if

get_all Array Return the Array containing all instances of the SmartFolder class.

all_smartfolders = ProShare.SmartFolder.get_all()

for each smartfolder in all_smartfolder

ProSuite Plugin Developer’s Guide

51

 logger smartfolder.name

next

create(name) SmartFolder Create and return new instance of the SmartFolder class.

name - a name of instance of the SmartFolder class.

set smartfolder = ProShare.SmartFolder.create("new smart folder")

logger smartfolder.name

The exceptions which can be raised by the SmartFolder class:

Exception Description

SFAlreadyExistsError Smart Folder with the same name already exists.

MetaAlreadyExistsError Meta field with the same name already exists.

FolderAlreadyContainedError Folder already contained.

IllegalCharactersInNameError Name cannot contain any of the following characters: *?:\\|/"<>.

3.2.1.4 ProShare events

The listed below events are used in event plugins creating. You can choose any of them on the step of macro creating

when selecting its type and features. The selected event will trigger the macro execution.

Event Description

AddSmartFolder The event occurs when the smart folder is created.

object - the SmartFolder object, which has been added.

EditSmartFolder The event occurs when the smart folder is edited.

object - the SmartFolder object which has been edited.

DeleteSmartFolder The event occurs when the smart folder is removed.

object - the SmartFolder object, which has been removed.

AddFileSmartFolder The event occurs when a file is added to the smart folder.

object - the File object, which has been added.

EditFileSmartFolder The event occurs when a file is edited in a smart folder.

object - the File object, which has been edited;

smart_folder - the array of SmartFolder objects, in which a file has been edited.

DeleteFileSmartFolder The event occurs when a file from is removed from a smart folder.

object - the File object, which has been removed;

smart_folder - the array of SmartFolder objects, from which a file has been removed.

AddFile The event occurs when a file is added.

object - the File object, which has been added.

EditFile The event occurs when a file is edited.

object - the File object, which has been edited.

DeleteFile The event occurs when a file is removed.

object - the File object, which has been removed.

ProSuite Plugin Developer’s Guide

52

3.2.2 ProContact

3.2.2.1 Pages where plugins are available

At the moment of creating the current document the plugins creating is available only on the Contacts page of the

ProContact application. From this page plugins can accumulate the information about the selected contacts and use it in

the macro’s source code.

3.2.2.2 ProContact global classes

3.2.2.2.1 Page_Status class

Page_Status is a global class that is used for working with the session of the user who pressed the button. This class is

accessed only from the button macros. The current status of the application is passed in this class.

Method Data type Description

selected_contacts Array/Nothing Return the Array containing the instances of the Contact class, which have

been selected on the main page of the ProContact application.

contacts = page_status.selected_contacts

if ubound(contacts) > -1 then

 selected = ubound(contacts) + 1

 logger selected & " contacts was selected"

else

 logger "Nothing selected"

end if

selected_contactlist ContactList/Nothing Return the instance of the ContactList class, which have been selected on the

main page of the ProContact application.

set contactlist = page_status.selected_contactlist

logger contactlist.name

3.2.2.3 ProContact classes

The instances of classes of the ProContact application are returned by the global methods of the application. The classes

of the ProContact application are described below.

3.2.2.3.1 Contact class

Contact is a class that provides an interface for working with contacts. All the parameters of this class are read-only. Every

instance has the following fields:

Field Data

type

Description

id String A String containing the globally unique identifier of the contact.

contacts = page_status.selected_contacts

set contact = contacts(0)

logger contact.id

prefix_name String A String containing the name that goes before the first name of a contact, such as Mr., Mrs.

and so on.

contacts = page_status.selected_contacts

set contact = contacts(0)

ProSuite Plugin Developer’s Guide

53

logger contact.prefix_name

suffix_name String A String containing the name that goes after the second name of a contact, such as junior,

senior and so on.

contacts = page_status.selected_contacts

set contact = contacts(0)

logger contact.suffix_name

first_name String A String containing the first name of the contact.

contacts = page_status.selected_contacts

set contact = contacts(0)

logger contact.first_name

middle_name String A String containing the middle name of the contact.

contacts = page_status.selected_contacts

set contact = contacts(0)

logger contact.middle_name

last_name String A String containing the last name of the contact.

contacts = page_status.selected_contacts

set contact = contacts(0)

logger contact.last_name

birthday String A String containing the date of birth of the contact.

contacts = page_status.selected_contacts

set contact = contacts(0)

logger contact.birthday

company String A String containing the company, in which the contact works.

contacts = page_status.selected_contacts

set contact = contacts(0)

logger contact.company

position String A String containing the position in the company where the contact works.

contacts = page_status.selected_contacts

set contact = contacts(0)

logger contact.position

3.2.2.3.2 ContactList class

ContactList is a class that provides an interface for working with contact lists. All the parameters of this class are read-

only. Every instance has the following fields:

Field Data type Description

guid String A String containing the globally unique identifier of the contact list.

set contactlist = page_status.selected_contactlist

logger contactlist.guid

name String A String containing the name of the contact list.

ProSuite Plugin Developer’s Guide

54

set contactlist = page_status.selected_contactlist

logger contactlist.name

color String A String containing the color of the contact list.

set contactlist = page_status.selected_contactlist

logger contactlist.color

3.2.2.4 ProContact events

The listed below events are used in event plugins creating. You can choose any of them on the step of macro creating

when selecting its type and features. The selected event will trigger the macro execution.

Event Description

AddContact The event occurs when the contact is created.

object - the Contact object, which has been created.

EditContact The event occurs when the contact is edited.

object - the Contact object, which has been edited.

DeleteContact The event occurs when the contact is removed.

object - the Contact object, which has been removed.

AddContactList The event occurs when the contact list is created.

object - the ContactList object, which has been created.

EditContactList The event occurs when the contact list is edited.

object - the ContactList object, which has been edited.

DeleteContactList The event occurs when the contact list is removed.

object - the ContactList object, which has been removed.

AddContactToList The event occurs when the contact is added to the contact list.

object - the ContactList object, to which the contact has been added;

contact - the Contact object, which has been added to the contact list.

RemoveContactFromList The event occurs when the contact is removed from the contact list.

object - the ContactList object, from which the contact has been removed;

contact - the Contact object, which has been removed from the contact list.

3.2.3 ProPlanning

3.2.3.1 Pages where plugins are available

At the moment of creating the current document the plugins creating is available only on the Planning page of the

ProPlanning application. From this page plugins can accumulate the information about the selected calendars and use it

in the macro’s source code.

3.2.3.2 ProPlanning global classes

ProSuite Plugin Developer’s Guide

55

3.2.3.2.1 Page_Status class

Page_Status is a global class that is used for working with the session of the user who pressed the button. This class is

accessed only from the button macros. The current status of the application is passed in this class.

Method Data

type

Description

selected_calendars Array Return the Array containing the instances of the Calendar class, which have been selected

on the main page of the ProPlanning application.

calendars = page_status.selected_calendars

if ubound(calendars) > - 1 then

 for each calendar in calendars

 logger calendar.summary

 logger calendar.guid

 logger calendar.color

 next

else

 logger "Nothing selected"

end if

time_interval Array Return the Array containing two objects: the first one in the first day of a month; the

second - the last day of a month. The dates are passed in the UNIXTIME format in seconds.

time_interval = page_status.time_interval

startDate = time_interval(0)

endDate = time_interval(1)

logger "Start: " & startDate

logger "End: " & endDate

calendar_view String Return the String containing the current view of the calendar: “month", "week", "day".

logger page_status.calendar_view

3.2.3.3 ProPlanning classes

The instances of classes of the ProPlanning application are returned by the global methods of the application. The classes

of the ProPlanning application are described below.

3.2.3.3.1 Calendar class

Calendar is a class that provides an interface for working with calendars. All the parameters of this class are read-only.

In event macros in order to manipulate the instances of the Calendar class you must set the user of by using the function

of ProAdmin class set_user.

Every instance has the following fields:

Field Data type Description

guid String/Empty A String containing the globally unique identifier of the calendar or Empty if there is no data.

calendars = page_status.selected_calendars

set calendar = calendars(0)

logger calendar.guid

summary String/Empty A String containing the name of the calendar or Empty if there is no data.

calendars = page_status.selected_calendars

ProSuite Plugin Developer’s Guide

56

set calendar = calendars(0)

logger calendar.summary

color String/Empty A String containing the color of the calendar or Empty if there is no data.

calendars = page_status.selected_calendars

set calendar = calendars(0)

logger calendar.color

rules Array An Array containing the values ("o" - owner, "w" - write access right, "r" - read access right)

which denote the access rights for user to the calendar.

calendars = page_status.selected_calendars

set calendar = calendars(0)

for each rule in calendar.rules

logger rule

next

It has the following methods:

Method Data type Description

get_events(start_date,

end_date)

Array Return the list of instances of the Event class, placed between the dates

specified by start_date and end_date arguments.

start_date - the starting date in the UNIXTIME format in milliseconds;

end_date - the ending date in the UNIXTIME format in milliseconds.

calendars = page_status.selected_calendars

timeInterval = page_status.time_interval

startDate = timeInterval(0)

endDate = timeInterval(1)

for each calendar in calendars

 events = calendar.get_events(startDate, endDate)

 count = ubound(events) + 1

 logger "Calendar '" & calendar.summary & "' has " & count & " events"

next

save Save the changes.

add_rules_for_user(

user, rules)

 Set access rights for the user specified by the user argument.

user - an instance of the User class;

rules - an Array containing the values ("o" - owner, "w" - write access right,

"r" - read access right) which denote the access rights for user to the

calendar.

set calendar = proplanning.calendar.create

calendar.summary = "Test calendar"

calendar.color = "#00FF00"

calendar.save()

set currentUser = ProAdmin.current_user

dim rules

rules = array("o", "w", "r")

calendar.add_rules_for_user(currentUser, rules)

ProSuite Plugin Developer’s Guide

57

get_by_guid(guid) Calendar/Nothing Return an instance of the Calendar class by its globally unique identifier. If

such instance does not exist, then Nothing will be returned.

set calendar = ProPlanning.Calendar.get_by_guid("some-guid")

if isNothing(calendar)

then

logger "Doesn't exists"

else

logger calendar.summary

end if

create Calendar Create and return an instance of the Calendar class.

delete Calendar Delete an instance of the Calendar class.

set calendar = proplanning.calendar.create

calendar.summary = "Test calendar"

calendar.save()

guid = calendar.guid

calendar.delete()

set find_calendar = ProPlanning.Calendar.get_by_guid(guid)

if isNothing(find_calendar) then

 logger "Calendar with GUID: " & guid & " doesn't exist"

else

 logger "Calendar was found"

end if

3.2.3.3.2 Event class

Event is a class that provides an interface for working with events. All the parameters of this class are read-only. Every

instance has the following fields:

Field Data type Description

guid String/Empty A String containing the globally unique identifier of the event or Empty if there is no data.

summary String/Empty A String containing the name of the event or Empty if there is no data.

description String/Empty A String containing the description of the event or Empty if there is no data.

rrule String/Empty A String containing the recurrence rule or Empty if there is no data.

start_date Date/Empty A Date containing the starting date in the UNIXTIME format in milliseconds or Empty if

there is no data.

end_date Date/Empty A Date containing the ending date in the UNIXTIME format in milliseconds or Empty if

there is no data.

until_date Date/Empty A Date containing the date until the recurrence rule will be repeated or Empty if there is

no data.

all_day Boolean A Boolean containing a value defining whether the event lasts all day long or not.

calendar_guid String/Empty A String containing the globally unique identifier of the calendar to which current event

belongs or Empty if there is no data.

calendars = page_status.selected_calendars

timeInterval = page_status.time_interval

startDate = timeInterval(0)

endDate = timeInterval(1)

for each calendar in calendars

 events = calendar.get_events(startDate, endDate)

 logger "Calendar " & calendar.summary

 for each ev in events

 logger "-----------------------------------"

 logger ev.guid

 logger ev.summary

ProSuite Plugin Developer’s Guide

58

 logger ev.description

 logger ev.rrule

 logger ev.start_date

 logger ev.end_date

 logger ev.until_date

 logger ev.all_day

 logger ev.calendar_guid

 next

next

It has the following methods:

Method Data type Description

save Save the changes.

create Calendar Create and return an instance of the Calendar class.

delete Event Delete an instance of the Event class.

calendars = page_status.selected_calendars

set calendar = calendars(0)

set e = ProPlanning.Event.create

e.start_date = #31.07.2012#

e.end_date = #31.07.2012#

e.summary = "Test event"

e.calendar_guid = calendar.guid

e.save()

e.delete()

3.2.3.3.3 Notification class

Notification is a class that provides an interface for working with notifications. All the parameters of this class are read-

only. Every instance has the following fields:

Field Data

type

Description

to_user User An instance of the User class denoting a user who receives a notification or Nothing if there is no

data. Cannot be set together with the to_email field.

sender User An instance of the User class denoting a user who sends a notification or Nothing if there is no data.

event Event An instance of the Event class denoting an event about which a user is notified or Nothing if there is

no data.

to_email String A String containing an E-mail address of the user who receives a notification or Nothing if there is

no data. Cannot be set together with the to_user field.

It has the following methods:

Method Data type Description

create Notification Create and return an instance of the Notification class.

add_notification(notification) Notification Add a notification.

notification - an instance of the Notification class.

set notification = proplanning.notification.create

set notification.sender = proadmin.current_user

notification.to_email = "mail@mail.mail"

set event = ProPlanning.Event.create

event.summary = "New meeting"

event.start_date = #31.07.2012#

event.end_date = #31.07.2012#

ProSuite Plugin Developer’s Guide

59

event.save()

set notification.event = event

ProPlanning.notification.add_notification(notification)

3.2.3.4 ProPlanning events

The listed below events are used in event plugins creating. You can choose any of them on the step of macro creating

when selecting its type and features. The selected event will trigger the macro execution.

Event Description

AddCalendarEvent The event occurs when new calendar is created.

calendar - the Calendar object, which has been created.

EditCalendarEvent The event occurs when a calendar is edited.

calendar - the Calendar object, which has been edited.

RemoveCalendarEvent The event occurs when a calendar is removed.

calendar - the Calendar object, which has been removed.

AddEventEvent The event occurs when an event of a calendar is added.

event - the Event object, which has been

EditEventEvent The event occurs when an event of a calendar is edited.

event - the Event object, which has been edited.

RemoveEventEvent The event occurs when an event of a calendar is removed.

event - the Event object, which has been removed.

ProSuite Plugin Developer’s Guide

60

4 Developer’s interface

Plugins for ProSuite applications represent a code in XML format, that is why they can be created in any text editor and

then imported to the application. Another way of creating plugins, which is more convenient one, is writing them directly

in the ProSuite application. It is made possible thanks to the Plugins developing interface implemented in the ProSuite

applications.

How to create a plugin, add macros and timers to it, export and import macros you will find in the next sections.

4.1 Plugin creating

The process of plugin creating consists of the following steps: creating the plugin itself, adding to it macros, and timers (if

necessary). Plugins for the ProSuite applications can be created in the Plugins section.

The Plugins section in the ProShare application

After pressing the Add new plugin button a dialog window opens, in which you will be asked to choose between

importing and creating plugin. If you want to import a plugin go to the section 1.6 Plug-in importing. If you want to

create new plugin, press the Create new plugin button in the dialog window.

A dialog window of adding plugins

ProSuite Plugin Developer’s Guide

61

Every plugin for the ProSuite applications have the features which will be displayed in the Plugins section of the ProSuite

application. So, fill the fields in the opened dialog window: enter the name of the plugin, the author’s name, short

description, the number of the plugin version and select the icon for it.

A form for the plugin creating

After saving the changes you will see just created plugin and its features in the Plugins section. Note, that in this section

you can delete, update, export and open the plugin.

The Plugins section of the ProShare application with just created plugin

ProSuite Plugin Developer’s Guide

62

The next step of creating a plugin is adding to it macros and timers (if necessary).

4.2 Macros creating

A plugin can consist of one or more macros which execute the main actions of plugin. Macro represents a source code

written in the VScript programming language. In order to add a macro to the plugin you must press the Open button to

open the plugin.

If you are opening an imported plugin, there can be some already created macros and timers, otherwise the lists of

macros and timers will be empty. Press Add new macro to create a macro.

Creating a macro for a plugin in the ProShare application

You will see the dialog window in which you will be asked to fill the fields. Every macro has name and can have a short

description. One of the most important things is to specify the necessary macro type (button or event) and its features

(location - for button macros, event - for event macros). After filling the fields and selecting the macro type and its

features, press the Save button to save the changes and create a macro.

ProSuite Plugin Developer’s Guide

63

A dialog window of a macro creating

After saving the changes the new macro will appear in the plugin. You can modify its description and delete it. In order to

write the source code of a macro, press the Edit source button.

Just created macro of a plugin

ProSuite Plugin Developer’s Guide

64

The new window will open. In this window you are to write the source code of a macro. You can use the global server

objects and the objects of the current ProSuite application in the code. On the whole, macro is that part of a plugin which

bears the main functionality and defines what exactly will be executed by the plugin. In order to avoid errors during the

plugin execution, press the Check button before saving the macro. The source code of the macro will be checked on

errors. Then save the macro by pressing the Save button.

The source code of a macro

4.3 Configuration macro

There is one special type of macros called configuration macro. It provides an opportunity of configuring the plugin to

which this macro refers. When you add a macro of such type, a Configure plugin button is added to the plugin. On

pressing the button the source code of this macro is executed.

To add a configuration macro create a new macro with the name “config”. At the top of the window a new button

Configure plugin will appear. To open the configuration macro press the Edit source button. This will open the macro,

where you can write the source code which will be executed on pressing the Configure Plugin button.

ProSuite Plugin Developer’s Guide

65

Configuration macro

4.4 Timers creating

Timers are used in plugins in order to execute the macro’s source code on expiry of the specified period of time. For

example, if you want some event to occur once a day, you must create a macro and bind a timer to it. The macros which

use timers are called the timer macros.

To create a timer open the plugin and press the Add new timer button.

Creating a timer for a plugin in the ProShare application

A new window will be opened in which you are to enter a name of a timer and the time interval on expiry of which the

event triggering the macro will occur.

A dialog window of a timer creating

After saving the changes the new timer will appear in the plugin. You can modify its description and delete it.

ProSuite Plugin Developer’s Guide

66

Just created timer of a plugin

4.5 Plugin exporting

Plugin exporting is necessary when you want to install the plugin on the identical ProSuite application located on another

server. The plugin will be exported and saved as an XML file, which content you can modify in any text editor.

To export a plugin go to the Plugins section of the ProSuite application, find the plugin which you want to export, press

the Export button, specify the location on the computer and save the file.

Exporting plugins in the ProShare application

4.6 Plugin importing

If you have an XML file of a plugin for the ProSuite application you can import it. To import a plugin means to install the

XML file of a plugin on your ProSuite application.

ProSuite Plugin Developer’s Guide

67

To import a plugin go to the Plugins section of the ProSuite application and press the Add new plugin button. In the

opened window press Choose file and select an XML file of a plugin, then press the Install button. In case the file is

damaged or has an incorrect format, you will see the alert message. After finishing the installation the plugin will appear

in the Plugins section and you can start using it.

Plugin importing to the ProSuite application

ProSuite Plugin Developer’s Guide

68

5 ProSuite applications API

Application Programming Interface (API), provided by ProSuite, represents a set of objects and methods collected into a

library, which can be used in the macros’ source code when writing plugins for the ProSuite applications. Described below

objects and methods of each ProSuite application allow you to integrate two or more applications and exchange the data

between them.

The API of each ProSuite application includes the objects accessible from this application and API methods used to

perform some operations.

The objects are passed to the methods in JSON format, where the data is structured into a set of key-value pairs. A

method returns an Array in JSON format, in which:

the first element - the string that can take two values: "success" (on successful completing the request) or "error" (if an

error has occurred);

the second element - the data returned as a result of method execution or an error code.

Execution of each metod may result in "success” and "error". If the request is completed successfully, in most cases the

output will contain the data returned by the method. The example of output on success:

['success', data]

If during execution some error occurs, the output will contain the error code and the description of it. The example of

output on error:

['error', error_code, error_description]

5.1 ProAdmin API

5.1.1 ProAdmin objects

5.1.1.1 User

User is an object of the ProAdmin application that stores information about the users of the application. It has the

following parameters:

guid - the globally unique identifier of the user; it is not passed when creating new User object;

email - the E-mail of the user; it is used as login;

first_name - the first name of the user;

last_name - the last name of the user;

password - the password of the user; it is passed only when creating new User object.

5.1.1.2 Application

Application is an object of the ProAdmin application that stores information about the ProSuite applications connected

to ProAdmin. It has the following parameters:

guid - the globally unique identifier of the application;

name - the name of the application;

host - the local host of the application.

5.1.2 ProAdmin API methods

ProSuite Plugin Developer’s Guide

69

Method Description

create_user(User)

Create new User object; return the globally unique identifier of it. Only administrator can create User

objects.

user - a User object in JSON format.

create_user(User) : ['success', "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"]

For example:

create_user({

 "email" : "login",

 "first_name" : "User",

 "last_name" : "Userov",

 "password" : "some_password"

})

delete_users(

users_guids)

Delete the User objects; return an empty String if the objects have been deleted successfully. Only

administrator can delete User objects.

users_guids - a list of globally unique identifiers of the User objects.

delete_users(users_guids) : ['success']

For example:

delete_users({

 “users_guids” : ([“6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-

CFCFCFCFCFCF"]

})

login(data)

Login the application; return the User object.

data - a User object in JSON format.

login(data) : ['success', User]

For example:

login({

 "login" : "login",

 "password" : "password"

})

retrieve_applications

Retrieve the registered Application objects; return an Array of them. Only administrator can retrieve

the Application objects.

retrieve_applications : ['success', [Application, Application]]

retrieve_users(data

)

Retrieve the requested User objects; return an Array of them.

data - User objects in JSON format consisting of:

users_guids - a list of globally unique identifiers of the User objects.

query - a query string. The User objects can be searched by "email". "last_name", "first_name"

parameters.

ProSuite Plugin Developer’s Guide

70

Method Description

retrieve_users(data) : ['success', [User, User]]

For example:

retrieve_users({

 "users_guids" : ["6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"

],

 "query" : "admin"

})

update_user(user)

Update the data of the User object; return the globally unique identifiers of it. Only administrator can

update the User object.

user - a User object in JSON format.

update_user(user) : ['success', "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"]

For example:

update_user({

 "guid" : "123",

 "email" : "new_login",

 "first_name" : "new_User",

 "last_name" : "new_Userov",

 "password" : "new_some_password"

})

5.1.3 Errors description

Error

code
Error name Description Your action

0 errScriptError
An error has occurred during the script

execution.
Report to a developer.

1 errBadJSONFormat
The JSON object has a syntax error and

cannot be processed correctly.

Check the compliance with the objects’

structure.

2 errNotLoggedIn
The session has expired and you have been

logged off.
Re-login the system.

3 errBadObjectFormat The JSON object has wrong structure. Check the object structure.

4 errObjNotExists
The object you want to pass / refresh does

not exist.
Refresh the list of objects.

5 errNotNeededRules
You do not have the necessary rights to edit

the object.

Check the list of user’s rights for this object or

refresh the list of objects.

6 errEmptyPassword
When trying to log in an empty password has

been passed.
Enter the password and re-login the system.

7 errLoginError Wrong login and password. Check the login and password.

5.2 ProShare API

5.2.1 ProShare objects

ProSuite Plugin Developer’s Guide

71

5.2.1.1 User

User is an object of the ProShare application that stores information about the users of the application. It has the

following parameters:

guid - the globally unique identifier of the user; it is not passed when creating new User object;

email - the E-mail of the user; it is used as login;

first_name - the first name of the user;

last_name - the last name of the user.

5.2.1.2 Node

Node is an object of the ProShare application that stores information about files and folders of the application. It has the

following parameters:

name - the name of the node; it is returned only when creating new Node object;

path - the absolute path to the node (for example, "/test_folder/test_folder"). When renewing and deleting a Node object,

the absolute path including the name of the node must be indicated (for example, "/test/file.doc").

5.2.1.3 File

File is a subobject of the Node object of the ProShare application that stores information about the files of the

application. It has the following parameters:

name - the name of the file;

path - the absolute path to the file (for example, "/test_folder/test_folder"); it is passed only by the upload_data method;

b64data - the data of the file stored in base64 format; it is passed only by the upload_data method;

size - the size of the file;

url - the URL of the file;

mimetype - the MIME type of the file. The Folder objects have the “folder” MIME type;

upload_date - the date of uploading the file to the server;

modification_date - the date of modifying the file.

5.2.2 ProShare API methods

Method Description

create_folder(Node

)

Create new folder as an instance of a Node class; return the absolute path to it.

Node - a Node object in JSON format.

create_folder(Node) : ['success', "/folder/new_folder"]

For example:

create_folder({

 "path" : "/folder",

 "name" : "new_folder"

})

delete_node(Node)

Delete the Node objects; return an empty String if the objects have been deleted successfully.

Node - a Node object in JSON format.

delete_node(Node) : ['success']

For example:

delete_node({

ProSuite Plugin Developer’s Guide

72

Method Description

 "path" : "/folder/style.css",

})

login(data)

Login the application; return the User object.

data - a User object in JSON format.

login(data) : ['success', User]

For example:

login({

 "login" : "login",

 "password" : "password"

})

retrieve_folder_data

Retrieve a list of the Node objects, which are stored in a folder; return an Array of the Node objects.

Node - a Node object in JSON format.

retrieve_folder_data(Node) : ['success', [File, File]]

For example:

retrieve_folder_data({

 "path" : "/folder",

})

update_node

Update the name of the Node object; return a path to it.

Node - a Node object in JSON format.

update_node(Node) : ['success', "/folder/asdsd,xml"]

For example:

update_node({

 "path" : "/folder/style.css",

 "name" : "new_style.css"

})

upload_file

Upload an instance of the File object to the server; return an empty string.

File - a File object in JSON format.

upload_file(File) : ['success']

For example:

upload_file({

 "path": "/folder",

 "b64data": "SGVsbG8hIEl0IGlzIFByb1NoYXJlIHYuMiBBUEk=",

 "name": "New file"

})

ProSuite Plugin Developer’s Guide

73

5.2.3 Errors description

Error

code
Error name Description Your action

0 errScriptError
An error has occurred during the script

execution.
Report to a developer.

1 errBadJSONFormat
The JSON object has a syntax error and

cannot be processed correctly.

Check the compliance with the objects’

structure.

2 errNotLoggedIn
The session has expired and you have

been logged off.
Re-login the system.

3 errBadObjectFormat The JSON object has wrong structure. Check the object structure.

4 errObjNotExists
The object you want to pass / refresh

does not exist.
Refresh the list of objects.

5 errNotNeededRules
You do not have the necessary rights to

edit the object.

Check the list of user’s rights for this

object or refresh the list of objects.

6 errEmptyPassword
When trying to log in an empty password

has been passed.

Enter the password and re-login the

system.

7 errLoginError Wrong login and password. Check the login and password.

8 errFolderAlreadyExist
The Folder object with such name already

exists.

9 errCouldNotDeleteRootDir The root folder cannot be removed.

10 errCouldNotRenameRootDir The root folder cannot be renamed.

11 errB64DecodeError
An error has occurred when trying to

decode Base64.

5.3 ProContact API

5.3.1 ProContact objects

5.3.1.1 User

User is an object of the ProContact application that stores information about the users of the application. It has the

following parameters:

guid - the globally unique identifier of the user; it is not passed when creating new User object;

email - the E-mail of the user; it is used as login;

first_name - the first name of the user;

last_name - the last name of the user.

5.3.1.2 ContactList

ContactList is an object of the ProContact application that stores information about the contact lists (groups of contacts).

It has the following parameters:

guid - the globally unique identifier of the contact list; it is not passed when creating new object of such type;

name - the name of the contact list;

color - (optional) the color of the contact list; it is not returned when creating new ContactList object.

5.3.1.3 Contact

Contact is an object of the ProContact application that stores information about the contacts. It has the following

parameters:

id - (optional) the identifier of the contact, it is not passed when creating new Contact object;

prefix_name - the name that goes before the first name of the contact, such as Mr., Mrs. and so on;

ProSuite Plugin Developer’s Guide

74

suffix_name - the name that goes after the second name of the contact, such as junior, senior and so on;

first_name - the first name of the contact;

middle_name - the middle name of the contact;

last_name - the last name of the contact;

birthday - the date of birth of the contact in UnixTimeStamp format;

company - the company, where the contact works;

position - the position in the company which the contact fills.

picture_url - (optional) the URL address of the image of the contact; it is not passed when creating/renewing the Contact

object;

picture_data - (optional) the image of the contact in Base64 format; it is passed when creating/renewing the Contact

object. The first parameter is the name of the file + its extension; the second parameter - the image in Base64 format;

note - the additional information about the contact;

owner_guid - (optional) the globally unique identifier of the object User who created current contact. You are allowed not

to pass this parameter, in this case the globally unique identifier of current User object will be used as the owner's one;

contact_lists - the globally unique identifiers of the contact lists to which the contact belongs;

phone - (optional) the telephone number of the contact stored as a dictionary in the remark-value format. Each of the

values can include other remark-value pairs;

email - (optional) the E-mail address of the contact stored as a dictionary in the remark-value format. Each of the values

can include other remark-value pairs;

address - (optional) the address of the contact stored as a dictionary in the remark-value format. Each of the values can

include other remark-value pairs.

5.3.2 ProContact API methods

Method Description

create_contact(Contact)

Create new Contact object; return the globally unique identifier of it.

Contact - a Contact object in JSON format.

create_contact(Contact) : ['success', сontact_guid]

For example:

create_contact({
 "prefix_name" : "mr.",
 "first_name" : "Nick",
 "middle_name" : "",
 "last_name" : "Hammond",
 "suffix_name" : "",
 "birthday" : 12312321321,
 "company" : "VDOM",
 "position" : "developer",
 "picture_data" : {“name”: "Photo.jpg",”data”: "TWFuIGlzIGRpc3Rpbmd1aXNoZW" },
 "note" : "note to contact",
 "contact_lists" : ["8d74d349-17e4-401d-aa38-b8dcecd4e223", "5d74d349-15e4-401d-aa38-

b8dcecd4e223"],
 "phone" : [{
 "remark" : "home",
 "value" : "8-909-545-4545" ,
 },
 {
 "remark" : "work",
 "value" : "8-509-545-4545"

 }
] }
 "email" : [{
 "remark" : "home",
 "value" : "lena@home.ru" ,

ProSuite Plugin Developer’s Guide

75

Method Description

 },
 {
 "remark" : "work",
 "value" : "lena@work.ru"

 }
] }
 "address" : [{
 "remark" : "home",
 "value" : {"postal_index": "635412", "city": "Tomsk", "region": "tomsk obl", "country": "Russia",

"address": "krasnoarmeyskaya"}]
})

create_contaсtlist(

ContactList)

Create new ContactList object; return the globally unique identifier of it.

ContactList - a ContactList object in JSON format..

create_contactlist(ContactList) : ['success', contactlist_guid]

For example:

create_contactlist({

 "name" : "Parents",

 "color" : "#F00"

})

delete_contaсts(

contacts_guids)

Delete the Contact objects; return an empty String if the objects have been deleted

successfully.

contacts_guids - the globally unique identifiers of the Contact objects in JSON format.

delete_contacts(data) : ['success']

For example:

delete_contacts({

 "contacts_guids" : ["23", "45"]

})

delete_contaсtlists(

contactlists_guids)

Delete the ContactList objects; return an empty String if the objects have been deleted

successfully.

contactlists_guids - the globally unique identifiers of the Contact objects in JSON format.

delete_contactlists(data) : ['success']

For example:

delete_contactlists({

 "contactlists_guids" : ["8d74d349-17e4-401d-aa38-b8dcecd4e223", "5d74d349-15e4-401d-aa38-

b8dcecd4e223"]

})

login(data)
Login the application, return the User object.

data - a User object in JSON format.

ProSuite Plugin Developer’s Guide

76

Method Description

login(data) : ['success', User]

For example:

login({

 "login" : "login",

 "password" : "password"

})

retrieve_contacts

Retrieve the Contact objects; return an Array consisting of them.

contactlists_guids - the globally unique identifiers of the ContactList objects;

contacts_guids - the globally unique identifiers of the Contact objects;

query - a query string used for searching among the Contact objects. You can search by the

following parameters: "prefix_name", "mr.", "first_name", "middle_name", "last_name",

"suffix_name", "company", "position", "additional_info".

retrieve_contacts(data) : ['success', [Contact, Contact]]

For example:

retrieve_contacts({

 "query" : "mike",

 "contactlists_guids" : ["8d74d349-17e4-401d-aa38-b8dcecd4e223"]

})

retrieve_contactlists

Retrieve the ContactList objects; return an Array consisting of them.

contactlists_guids - the globally unique identifiers of instances of a ContactList class;

access - the access rights: 'w' - (default value) write rights; 'r' - read rights; 'o' - owner of the

object.

retrieve_contactlists(data) : ['success', [ContactList, ContactList]]

For example:

retrieve_contactlists({

 "access" : "o"

})

update_contact(Contact)

Update the Contact object (renew its picture or put the Contact object to the contact list);

return a globally unique identifier of it.

Contact - a Contact object in JSON format.

update_contact(Contact) : ['success', contact_guid]

update_contactlist(

ContactList)

Update the ContactList object (renew its name or its color); return a globally unique identifier

of it.

ContactList - a ContactList object in JSON format.

update_contactlist(ContactList) : ['success', contactlist_guid]

ProSuite Plugin Developer’s Guide

77

5.3.3 Errors description

Error

code
Error name Description Your action

0 errScriptError
An error has occurred during the script

execution.
Report to a developer.

1 errBadJSONFormat
The JSON object has a syntax error and

cannot be processed correctly.

Check the compliance with the objects’

structure.

2 errNotLoggedIn
The session has expired and you have been

logged off.
Re-login the system.

3 errBadObjectFormat The JSON object has wrong structure. Check the object structure.

4 errObjNotExists
The object you want to pass / refresh does

not exist.
Refresh the list of objects.

5 errNotNeededRules
You do not have the necessary rights to edit

the object.

Check the list of user’s rights for this object or

refresh the list of objects.

6 errEmptyPassword
When trying to log in an empty password has

been passed.
Enter the password and re-login the system.

7 errLoginError Wrong login and password. Check the login and password.

5.4 ProPlanning API

5.4.1 ProPlanning objects

5.4.1.1 User

User is an object of the ProPlanning application that stores information about the users of the application. It has the

following parameters:

guid - the globally unique identifier of the user; it is not passed when creating new User object;

email - the E-mail of the user; it is used as login;

first_name - the first name of the user;

last_name - the last name of the user.

5.4.1.2 Calendar

Calendar is an object of the ProPlanning application that stores information about the calendars of the application. It has

the following parameters:

guid - the globally unique identifier of the calendar; it is not passed when creating new Calendar object;

name - the name of the calendar;

color - the color of the calendar;

access - (optional) the access rights; it is not passed when creating new Calendar object: 'w' - (default value) write rights,

allows creating and editing events, creating and editing calendars, but does not allow deleting them; 'r' - read rights,

allows only look through the events and calendars; 'o' - owner of the object, allows any manipulations with events and

calendars;

events - (optional) the globally unique identifiers of the Event objects belonging to current calendar; it is not passed when

creating/renewing the Calendar object.

4.4.1.3 Event

Event is a subobject of the Calendar object of the ProPlanning application that stores information about the events. It has

the following parameters:

guid - the globally unique identifier of the event; it is not passed when creating new Event object;

start_date - the start date of event in the UnixTimeStamp format;

ProSuite Plugin Developer’s Guide

78

end_date - the end date of event in the UnixTimeStamp format;

summary - the name of the event;

description - (optional) the description of the event;

all_day - (optional, by default - True) the duration of the event is all-day;

rrule - (optional, by default - nothing) the recurrence rule of the event; it is set in iCalendar format;

creator_guid - (optional) the globally unique identifier of the object User who created current event; it is not passed when

creating new Event object;

exdates - (optional, by default - empty) the exception dates when the event is not repeated; it is set together with the

recurrence rule (“rrule” parameter);

calendar_guid - the globally unique identifier of the Calendar object, to which current event belongs;

editable - (optional) the access rights for editing the event. If it is set to True, then the access rights are inherited from an

instance of the Calendar object, to which current even belongs. If it is set to False, editing and deleting the event is

forbidden. Usually False indicates that the event represents a link to another event. This happens when user accepts an

invitation to the event. This parameter is not passed when creating new Event object;

invites - the globally unique identifier of the Invite object; it is passed only when creating new Invite object. The “invites”

parameter will not be passed by the “retrieve_events” method.

5.4.1.4 Invite

Invite is an object of the ProPlanning application that stores information about the invites. It has the following

parameters:

guid - the globally unique identifier of the invite; it is not passed when creating new Invite object;

from_user_guid - (optional) the globally unique identifier of the object User who sends the invite; it is not passed when

creating/renewing the Invite object;

to_user_guid - (optional) the globally unique identifier of the object User who receives the invite; if the “to_email”

parameter is set, the “to_user_guid” parameter is not passed when creating new Invite object;

to_email - (optional) the E-mail address of the User object who receives the invite; if the “to_user_guid” parameter is set,

the “to_email” parameter is not passed when creating new Invite object;

event_guid - (optional) the globally unique identifier of the Event object, to which the invite refers; it is not passed when

creating/renewing the Invite object;

summary - (optional) the description of the invite; it is not passed when creating/renewing the Invite object;

start_date - (optional) the start date of an event to which current invite refers in the UnixTimeStamp format. This

parameter copies the value of the “start_date” parameter with the globally unique identifier specified by the “event_guid”

parameter;

status - (optional) the status of the invite. There is four possible variants of value: 0 - accepted; 1 - rejected; 2 - sent; 3 -

accepted by E-mail (the invite is still active and can be accepted or rejected); it is not passed when creating new Invite

object;

creation_date - (optional) the date of creating the invite; if the “to_user_guid” parameter is set, the “creation date” is not

passed when creating new Invite object.

5.4.2 ProPlanning API methods

Method Description

create_calendar

Create new Calendar object; return the globally unique identifier of it.

Calendar - a Calendar object in JSON format.

create_calendar(Calendar) : ['success', "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"]

create_event

Create new Event object; return the globally unique identifier of it. If the “invites” parameter is not

empty, the Invite objects will be created.

Event - an Event object in JSON format.

create_event(Event) : ['success', "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"]

delete_calendars Delete the Calendar objects; return an empty String if the objects have been deleted successfully. The

ProSuite Plugin Developer’s Guide

79

Method Description

Calendar objects to which you have access rights will be deleted.

calendars_guids - globally unique identifiers of the Calendar.

delete_calendars(data) : ['success']

For example:

delete_calendars({

 "calendars_guids" : ["6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-

CFCFCFCFCFCF"]

})

delete_events

Delete the Event objects; return an empty String if the objects have been deleted successfully. The Event

objects to which you have access rights will be deleted.

calendars_guids - globally unique identifiers of the Calendar objects.

delete_events(data) : ['success']

For example:

delete_events({

 "events_guids" : ["6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"]

})

retrieve_calendars

Retrieve the Calendar objects; return an Array consisting of them.

calendars_guids - globally unique identifiers of the Calendar objects;

access - the access rights: 'w' - write rights; 'r' - (default value) read rights; 'o' - owner of the object.

retrieve_calendars (data) : ['success', [Calendar, Calendar]]

For example:

retrieve_calendars ({

 "calendars_guids" : ["6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-

CFCFCFCFCFCF"],

 "access" : "w"

})

retrieve_events

Retrieve the Event objects; return an Array consisting of them.

calendar_guids - globally unique identifiers of the Calendar objects.

retrieve_events(data) : ['success', [Event, Event]]

For example:

retrieve_events({

 "calendar_guids" : ["6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"

]

})

retrieve_invites Retrieve the Invite objects; return an Array consisting of them. When calling this method without

ProSuite Plugin Developer’s Guide

80

Method Description

arguments - all Invite objects will be returned.

event_guid - globally unique identifiers of the Invite objects;

retrieve_invites(data) : ['success', [Invite, Invite]]

For example:

retrieve_invites({

 "event_guid" : "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"

})

update_calendar

Return the globally unique identifier of the Calendar object.

Calendar - a Calendar object in JSON format.

update_calendar(Calendar) : ['success', "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"]

update_event

Return the globally unique identifier of the Event object. If the “invites” parameter is not empty, the

Invite objects with an empty “guid” parameter will be created.

Event - an Event object in JSON format.

update_event(Event) : ['success', "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"]

update_invite

Update the Invite object (the “status” and the “calendar_guid” parameters); return an empty String.

guid - a globally unique identifier of the Invite object;

status - the status of the invite. There is four possible variants of value: 0 - accepted; 1 - rejected;

calendar_guid - the globally unique identifier of the Calendar object, to which current Invite object

belongs.

update_invite(data) : ['success', '']

For example:

update_invite({

 "guid" : "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF",

 "status" : "1",

 "calendar_guid" : "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"

})

5.4.3 ProPlanning recurrence rule

The ProPlanning recurrence rule definces the way of repetition of events in ProPlanning. The format of iCalendar©

(http://www.ietf.org/rfc/rfc2445.txt) is used here.

There are some of the examples of setting the recurrence rule in ProPlanning:

Repeat mode Notation Description

Daily repeat №1 FREQ=DAILY;BYDAY=MO,TU,WE,TH,FR Every workday.

Daily repeat №2 FREQ=DAILY;INTERVAL=2 Every second day.

Weekly repeat №1 FREQ=WEEKLY;INTERVAL=2 Every second week.

Weekly repeat №2 FREQ=WEEKLY;BYDAY=MO,TU Every week on Mondays and Tuesdays.

Monthly repeat FREQ=MONTHLY;INTERVAL=2;BYMONTHDAY=3 Every 3
rd

 day of every second month.

ProSuite Plugin Developer’s Guide

81

Repeat mode Notation Description

№1

Monthly repeat

№2
FREQ=MONTHLY;NTERVAL=2;BYDAY=3MO Every 3

rd
 Monday of every second month.

Annual repeat №1 FREQ=YEARLY;INTERVAL=1;BYMONTHDAY=2;BYMONTH=2 Every 2
nd

 February of every year.

Annual repeat №2 FREQ=YEARLY;INTERVAL=1;BYDAY=2TU;BYMONTH=2
Every 2

nd
 Tuesday of February of every

year.

5.4.4 Errors description

Error

code
Error name Description Your actions

0 errScriptError
An error has occurred during the script

execution.
Report to a developer.

1 errBadJSONFormat
The JSON object has a syntax error and

cannot be processed correctly.

Check the compliance with the objects’

structure.

2 errNotLoggedIn
The session has expired and you have been

logged off.
Re-login the system.

3 errBadObjectFormat The JSON object has wrong structure. Check the object structure.

4 errObjNotExists
The object you want to pass / refresh does

not exist.
Refresh the list of objects.

5 errNotNeededRules
You do not have the necessary rights to edit

the object.

Check the list of user’s rights for this object

or refresh the list of objects.

6 errEmptyPassword
When trying to log in an empty password

has been passed.
Enter the password and re-login the system.

7 errLoginError Wrong login and password. Check the login and password.

8 errCalendarObjNotExist
The Calendar object you want to pass /

refresh does not exist.
Refresh the list of objects.

9 errEventObjNotExist
The Event object you want to pass / refresh

does not exist.
Refresh the list of objects.

10 errInviteObjNotExist
The Invite object you want to pass / refresh

does not exist.
Refresh the list of objects.

5.5 ProSearch API

5.5.1 ProSearch objects

5.5.1.1 User

User is an object of the ProSearch application that stores information about the users of the application. It has the

following parameters:

guid - the globally unique identifier of the user; it is not passed when creating new User object;

email - the E-mail of the user; it is used as login;

first_name - the first name of the user;

last_name - the last name of the user.

5.5.1.2 Agent

Agent is an object of the ProSearch application that stores information about the agent of the application. Agent is a

separate application that sends information to the ProSearch application. It has the following parameters, which are

passed on creating the Agent object.

ProSuite Plugin Developer’s Guide

82

guid - the globally unique identifier of the agent;

name - the name of the agent.

5.5.1.3 Index

Index is an object of the ProSearch application that stores information about the index of the application. Index

represents information that is sent by agent to ProSearch. It has the following parameters, which are passed on creating

the Index object.

id - the identifier of an index;

name - the name of the file;

search_source - the path where the information about the file will be stored;

data - the text information about the file;

url - the URL address by which the file will be accessed;

agent_guid - the globally unique identifier of the Agent object.

5.5.1.4 SearchSource

SearchSource is an object of the ProSearch application that stores information about the search source of the application.

Search source represents a place where the ProSearch application searches information. It can be a path to a folder if you

search some documents or another ProSuite application if you search contacts in ProContact or files in ProShare. It has

the following parameters:

search_source - the place where to search;

agent_guid - the globally unique identifier of the Agent object.

5.5.1.5 Document

Document is an object of the ProSearch application that stores information about the documents stored by of the

application. Here document represents not only text files, but also the contacts in ProContact and files in ProShare. It has

the following parameters:

guid - the globally unique identifier of the document;

filename - the name of the document;

content - the content of the document;

path - the search source where the document is stored;

physical_name;

creation_datetime;

author.

5.5.2 ProSearch API methods

Method Description

create_agent

Create new Agent object; return the globally unique identifier of it.

Agent - an Agent object in JSON format.

create_agent(Agent) : ['success', "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"]

For example:

create_agent({

 "guid" : “com.new_agent”,

 "name" : "ProSearch Agent”

})

create_index
Create new Index object; return the globally unique identifier of it.

Index - an Index object in JSON format.

ProSuite Plugin Developer’s Guide

83

Method Description

create_index(Index) : ['success']

For example:

create_index({

 "id" : "123",

 "name" : "User Userovich”,

 "search_source" : "search_source_path",

 "data" : "LastName=Userovich;FirstName=User",

 "url" : "http://ProContact.com/home?guid=1405",

 "agent_guid" : "com.new_agent"

})

create_search_source

Create new SearchSource object; return the globally unique identifier of it.

SearchSource - a SearchSource object in JSON format.

create_search_source(SearchSource) : ['success']

For example:

create_search_source({

 "search_source" : "search_source_path",

 "agent_guid" : "com.new_agent"

})

delete_agent

Delete the Agent objects; return an empty String if the objects have been deleted successfully.

agent_guid - globally unique identifier of the Agent object.

delete_agent(data) : ['success']

For example:

delete_agent({

 "agent_guid" : "com.new_agent"

})

delete_index

Delete the Index objects; return an empty String if the objects have been deleted successfully.

Index - an Index object in JSON format.

delete_index(Index) : ['success']

For example:

delete_index({

 "id" : 123,

 "name" : "index name",

 "search_source" : "search_source_path",

 "agent_guid" : "com.new_agent"

})

delete_search_source Delete the SearchSource objects; return an empty String if the objects have been deleted

ProSuite Plugin Developer’s Guide

84

Method Description

successfully.

SearchSource - a SearchSource object in JSON format.

delete_search_source(SearchSource) : ['success']

For example:

delete_search_source({

 "search_source" : "search_source_path",

 "agent_guid" : "com.new_agent"

})

login(data)

Login the application, return the User object.

data - a User object in JSON format.

login(data) : ['success', User]

For example:

login({

 "login" : "login",

 "password" : "password"

})

retrieve_results

Retrieve the Document objects; return an Array consisting of them.

query - the text string for searching;

access - the access rights: 'w' - write rights; 'r' - (default value) read rights. You can also set the

directories where to search.

retrieve_results(data) : ['success', [Document, Document]]

For example:

retrieve_results({

 "query" : "user"

})

5.5.3 Errors description

Error

code
Error name Description Your actions

0 errScriptError
An error has occurred during the script

execution.
Report to a developer.

1 errBadJSONFormat
The JSON object has a syntax error and

cannot be processed correctly.

Check the compliance with the

objects’ structure.

2 errNotLoggedIn
The session has expired and you have

been logged off.
Re-login the system.

3 errBadObjectFormat The JSON object has wrong structure. Check the object structure.

4 errObjNotExists The object you want to pass / refresh Refresh the list of objects.

ProSuite Plugin Developer’s Guide

85

Error

code
Error name Description Your actions

does not exist.

5 errNotNeededRules
You do not have the necessary rights

to edit the object.

Check the list of user’s rights for this

object or refresh the list of objects.

6 errEmptyPassword
When trying to log in an empty

password has been passed.

Enter the password and re-login the

system.

7 errLoginError Wrong login and password. Check the login and password.

8 errObjectAlreadyExist
The object you want to create already

exists.

9 errAgentLimitation
You have reached the limit of Agent

objects.

10 errSourceLimitation
You have reached the limit of

SearchSource objects.

11 errAgentObjectAlreadyExist
The Agent object with such globally

unique identifier already exists.

12 errSearchSourceObjectAlreadyExist
The SearchSource object with such

name already exists.

13 errAgentObjNotExists
The Agent object with such globally

unique identifier does not exist.

14 errSearchSourceObjNotExists
The SearchSource object with such

name does not exist.

5.6 ProMail API

5.6.1 ProMail objects

5.6.1.1 User

User is an object of the ProMail application that stores information about the users of the application. It has the following

parameters:

guid - the globally unique identifier of the user; it is not passed when creating new User object;

email - the E-mail of the user; it is used as login;

first_name - the first name of the user;

last_name - the last name of the user.

5.6.1.2 Archive

Archive is an object of the ProMail application that stores information about the archives of the application. It has the

following parameters:

guid - (optional) the globally unique identifier of the archive, it is not passed when creating the Archive object;

name - the name of the archive;

color - (optional) the color of the archive, by default the value is #FFFFFF;

mailbox_guid - the globally unique identifier of the Mailbox object, where the archive will be created.

5.6.1.3 Mailbox

Mailbox is an object of the ProMail application that stores information about the mailboxes. It has the following

parameters:

guid - (optional) the globally unique identifier of the mailbox.

name - the name of the mailbox;

address - the E-mail address of the mailbox.

ProSuite Plugin Developer’s Guide

86

5.6.1.4 Mail

Mail is an object of the ProMail application that stores information about the mails. It has the following parameters:

guid - (optional) the globally unique identifier of the mail, it is not passed when creating the Mail object;

subject - the E-mail subject;

from_email - the E-mail address from which the letter is sent;

to_email - the E-mail address to which the letter is sent;

date - (optional) the date and time when the letter is sent. If this parameter is not indicated explicitly, the time of the

server will be used.

priority - the priority of the letter (by default - normal);

location - the location where to put the letter;

body - the main part (body) of the letter;

attachment - the attachments to the letter, the number of them is in output;

archive -

5.6.1.5 Attachment

Attachment is an object of the ProMail application that stores information about the attachments to letters. It has the

following parameters:

guid - (optional) the globally unique identifier of the attachment, it is not passed when creating the Attachment object;

filename - the name of the attachment;

download_url - (optional) the link to the attachment, it is not passed when creating the Attachment object;

mimetype - the MIME type of the attachment;

filedata - the attachment encoded in base64 format.

5.6.2 ProMail API methods

Method Description

create_archive

Create new Archive object for the current user; return the globally unique identifier of it.

Archive - an Archive object in JSON format.

create_archive(Archive) : ['success', archive_guid]

For example:

create_archive({

 "name" : "VDOM Box Research",

 "color" : "#FFFFFF",

 "mailbox_guid" : "123"

})

create_mailbox

Create new Mailbox object for the current user; return the globally unique identifier of it.

Mailbox - a Mailbox object in JSON format.

create_mailbox(Mailbox) : ['success', mailbox_guid]

For example:

create_mailbox({

 “name” : “BgTronic.Directeur_box”,

 “email” : “BgTronic.Directeur@cybertronique.com”,

 "password" : "password"

})

ProSuite Plugin Developer’s Guide

87

Method Description

delete_archive

Delete the Archive objects; return an empty String if the objects have been deleted

successfully. When executing this method an errNotNeededRules error, that user does not

have access rights to perform such operation, may occur.

guid - globally unique identifier of the Archive object.

delete_archive(data) : ['success']

For example:

delete_archive({

 "guid" : "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"

})

delete_mail

Delete the Mail objects from the mailbox; return an empty String if the objects have been

deleted successfully. When executing this method an errNotNeededRules error, that user

does not have access rights to perform such operation, may occur.

mailbox_guid - globally unique identifier of the Mailbox objects;

mails_guids - globally unique identifiers of the Mail objects.

delete_mail(data) : ['success']

For example:

delete_mail({

 "mailbox_guid" : "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF",

 "mails_guids" : ["6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-

CFCFCFCFCFCF"]

})

delete_mailbox

Delete the Mailbox objects; return an empty String if the objects have been deleted

successfully. When executing this method an errNotNeededRules error, that user does not

have access rights to perform such operation, may occur.

mailbox_guid - globally unique identifier of the Mailbox. object

delete_mailbox(data) : ['success']

For example:

delete_mailbox({

 "mailbox_guid" : "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"

})

fetch_mails_from_pop3

Fetch the data from POP3 sever; return nothing.

fetch_mails_from_pop3()

login(data)

Login the application, return the User object.

data - a User object in JSON format.

login(data) : ['success', User]

ProSuite Plugin Developer’s Guide

88

Method Description

For example:

login({

 "login" : "login",

 "password" : "password"

})

retrieve_archives

Retrieve all Archive objects by the globally unique identifiers of the Mailbox objects; return

an Array consisting of them. When executing this method an errNotNeededRules error,

that user does not have access rights to perform such operation, may occur.

mailboxes_guids - the globally unique identifiers of the Mailbox objects.

retrieve_archives(data) : ['success', [Archive, Archive]]

For example:

retrieve_archives({

 "mailboxes_guids" : ["6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-

CFCFCFCFCFCF"]

})

retrieve_mailboxes

Retrieve all Mailbox objects by their globally unique identifiers; return an Array consisting

of them. The method can be called without parameters, in this case all data of new the

Mailbox objects will be returned. When executing this method an errNotNeededRules

error, that user does not have access rights to perform such operation, may occur.

mailboxes_guids - globally unique identifiers of the Mailbox objects.

retrieve_mailboxes(data) : ['success', [Mailbox, Mailbox]]

For example:

retrieve_mailboxes({

 "mailboxes_guids" : ["6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-

CFCFCFCFCFCF"]

})

retrieve_mails

Retrieve all Mail objects by the globally unique identifier of the Mailbox object; return an

Array consisting of them. When executing this method an errNotNeededRules error, that

user does not have access rights to perform such operation, may occur.

mailbox_guid - globally unique identifier of the Mailbox object;

mail_guid - globally unique identifier of the Mail object;

archive_guids - globally unique identifier of the Archive object;

limit - the number of objects to return;

offset - the number indicating the displacement from the beginning and up to the given

number;

query - a query string used for searching among the Mail objects.

retrieve_mails(data) : ['success', [Mail, Mail]]

For example:

ProSuite Plugin Developer’s Guide

89

Method Description

retrieve_mails({

 "mailbox_guid" : "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF",

 "limit" : 10,

 "offset" : 0,

 "query" : "Work"

})

retrieve_new_mails_count(data

)

Retrieve the Mailbox objects; return the output in JSON format. The method can be called

without parameters, in this case all data of the Mailbox objects will be returned.

mailboxes_guids - globally unique identifiers of the Mailbox objects.

retrieve_new_mails_count(data) : ['success', [output, output]]

For example:

retrieve_new_mails_count({

 "mailboxes_guids " : ["6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-

CFCFCFCFCFCF", "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF"]

})

retrieve_senders

Retrieve all E-mail addresses of senders; return an Array consisting of them. No

parameters are needed.

retrieve_senders() : ['success', ["email@email.com", "user@user.com"]]

send_mail(data)

Send E-mail; return the globally unique identifier of the Mail object. When executing this

method an errNotNeededRules error, that user does not have access rights to perform

such operation, may occur.

mailbox_guid - a globally unique identifier of the Mailbox object;

mail - a Mail object.

send_mail(data) : ['success', mail_guid]

For example:

send_mail({

 "mailbox_guid" : "6F6F6F6F-8B8B-D1D1-B4B4-CFCFCFCFCFCF",

 "mail" : Mail

})

update_archive

Update the Archive object; return the globally unique identifier of it. When executing this

method an errNotNeededRules error, that user does not have access rights to perform

such operation, may occur.

Mailbox - an Archive object.

update_archive(Archive) : ['success', archive_guid]

For example:

update_archive({

 "guid" : "10",

 "name" : "VDOM Box Research",

ProSuite Plugin Developer’s Guide

90

Method Description

 "color" : "#FFFFFF",

 "mailbox_guid" : "123"

})

update_mailbox

Update the Mailbox object; return the globally unique identifier of it. When executing this

method an errNotNeededRules error, that user does not have access rights to perform

such operation, may occur.

Mailbox - a Mailbox object.

update_archive(Mailbox) : ['success', mailbox_guid]

For example:

update_archive({

 "guid" : "10",

 “name” : “BgTronic.Directeur_box”,

 “email” : “BgTronic.Directeur@cybertronique.com”,

 "password" : "password"

})

5.6.3 Errors description

Error

code
Error name Description Your action

0 errScriptError
An error has occurred during the script

execution.
Report to a developer.

1 errBadJSONFormat
The JSON object has a syntax error and

cannot be processed correctly.

Check the compliance with the JSON

objects’ structure.

2 errNotLoggedIn
The session has expired and you have

been logged off.
Re-login the system.

3 errBadObjectFormat The JSON object has wrong structure. Check the object structure.

4 errObjNotExists
The object you want to pass / refresh

does not exist.
Refresh the list of objects.

5 errNotNeededRules
You do not have the necessary rights to

edit the object.

Check the list of user’s rights for this

object or refresh the list of objects.

6 errEmptyPassword
When trying to log in an empty

password has been passed.

Enter the password and re-login the

system.

7 errLoginError Wrong login and password. Check the login and password.

8 errArchiveObjectSameNameExist
The Archive object with such name

already exists.

9 errMailboxObjectNotExist
The Mailbox object with such globally

unique identifier does not exist.

10 errArchiveObjectNotExist
The Archive object with such globally

unique identifier does not exist.

ProSuite Plugin Developer’s Guide

91

6 Additional information

The additional information on creating macro’s source code in VScript programming language you can find in the VScript

Documentation.

ProSuite Plugin Developer’s Guide

92

Index

Application class, 30

Buffer class, 33

Button macro, 5

Calendar class, 55

Configuration macro, 5

Contact class, 52

ContactList class, 53

DBDictionary class, 31

Event class, 57

Event macro, 5

File class, 44

Folder class, 46

Group class, 29

Macro, 5

Notification class, 58

Page_Status class, 44, 52, 55

Plugin, 5

ProAdmin API, 68

ProAdmin class, 27

ProContact API, 73

ProMail API, 85

ProPlanning API, 77

ProSearch API, 81

ProShare API, 70

ProShare class, 43

SessionDictionary class, 32

SmartCard class, 30

SmartFolder class, 49

System class, 30

Timer, 5

Timer macro, 5

URLLib class, 35

User class, 29

XML_Dialog, 36

